

Peter Uylings & Ton Raassen
API, University of Amsterdam
SRON, Netherlands Institute of Space research

Orthogonal Operators: Extension to hyperfine structure

Orthogonal operators, short story

$$u:v=\sum_{\Psi,\Psi'}\langle\Psi\mid u\mid\Psi'\rangle\,\langle\Psi'\mid v\mid\Psi\rangle$$

Orthogonal operators, like it was 25 years ago:

- p-shell: 2p, 3p hardly
- d-shell: 3d,4d,5d.... mostly III,IV, V and VI spectra (plus Fe II and Co II)
- E1, M1 and E2 transition probabilities.
- f-shell: 4f,5f.... no.
- g-factors: no.
- hyperfine structure: no.

Orthogonal operators, like it is now:

- p-shell: 2p, 3p Yes.
- d-shell: 3d,4d,5d.... neutral to 10+ spectra.
- E1, M1, E2 and M2 transition probabilities.
- f-shell: 4f,5f.... Yes.
- g-factors: Yes.
- hyperfine structure: Yes.

Use eigenvectors to:

Calculate transition probabilities from the model space

$$S_{if} = \left| \sum_{SL\nu S'L'\nu'} (i|SL\nu J) \ S^{\frac{1}{2}}(SL\nu J, S'L'\nu' J') \ (S'L'\nu' J'|f) \right|^{2}$$

Use eigenvectors to:

Calculate transition probabilities from the model space

$$S_{if} = \left| \sum_{SL\nu S'L'\nu'} (i|SL\nu J) \ S^{\frac{1}{2}}(SL\nu J, S'L'\nu' J') \ (S'L'\nu' J'|f) \right|^{2}$$

Calculate hyperfine structure A and B constants

$$A_J(E_J) = \sum_{SL\gamma, S'L'\gamma'} (E_J|SL\gamma J) \cdot A_J(SL\gamma J, S'L'\gamma' J') \cdot (S'L'\gamma' J|E_J)$$

Use eigenvectors to:

Calculate transition probabilities from the model space

$$S_{if} = \left| \sum_{SL\nu S'L'\nu'} (i|SL\nu J) \ S^{\frac{1}{2}}(SL\nu J, S'L'\nu' J') \ (S'L'\nu' J'|f) \right|^{2}$$

Calculate hyperfine structure A and B constants

$$A_J(E_J) = \sum_{SL\gamma, S'L'\gamma'} (E_J|SL\gamma J) \cdot A_J(SL\gamma J, S'L'\gamma' J') \cdot (S'L'\gamma' J|E_J)$$

Calculate g-factors

$$g_J(E_J) = \sum_{SL\nu} (E_J|SL\nu J) \cdot g_J(SL) \cdot (SL\nu J|E_J)$$

Model space large enough?

Include core and valence excitations:

$$3s \rightarrow 3d$$
 and $3p^2 \rightarrow 3d^2$ or: $5d \rightarrow 6s$

A simple example with $\langle \alpha' | = \langle 5d^9 |, |\alpha \rangle = |5d^86p \rangle$ and $|\gamma \rangle = |5d^86s \rangle$ would be:

$$\langle \Psi' | \mathbf{r} | \Psi \rangle \approx \langle 5d^9 | \mathbf{r} | 5d^86p \rangle + \frac{\langle 5d^9 | V | 5d^86s \rangle \langle 5d^86s | \mathbf{r} | 5d^86p \rangle}{E_{5d} - E_{6s}}$$

$$(18.30)$$

The results turn out to be in quite good agreement with the results from the full diagonalization procedure:


$$\langle \Psi' | \mathbf{r} | \Psi \rangle \approx \langle 5d^9 + 5d^86s | \mathbf{r} | 5d^86p \rangle$$
 (18.31)

The CARMENES search for exoplanets around M dwarfs

Not-so-fine hyperfine-split vanadium lines in cool star spectra*

```
Y. Shan<sup>1</sup>, A. Reiners<sup>1</sup>, D. Fabbian<sup>1,2,3</sup>, E. Marfil<sup>4</sup>, D. Montes<sup>4</sup>, H. M. Tabernero<sup>5</sup>, I. Ribas<sup>6,7</sup>, J. A. Caballero<sup>5</sup>, A. Quirrenbach<sup>8</sup>, P. J. Amado<sup>9</sup>, J. Aceituno<sup>10,9</sup>, V. J. S. Béjar<sup>11,12</sup>, M. Cortés-Contreras<sup>5</sup>, S. Dreizler<sup>1</sup>, A. P. Hatzes<sup>13</sup>, Th. Henning<sup>14</sup>, S. V. Jeffers<sup>15,1</sup>, A. Kaminski<sup>8</sup>, M. Kürster<sup>14</sup>, M. Lafarga<sup>6,7,16</sup>, J. C. Morales<sup>6,7</sup>, E. Nagel<sup>17,13</sup>, E. Pallé<sup>11</sup>, V. M. Passegger<sup>18,17</sup>, C. Rodriguez-López<sup>9</sup>, A. Schweitzer<sup>17</sup>, and M. Zechmeister<sup>1</sup>
```


The CARMENES search for exoplanets around M dwarfs

Not-so-fine hyperfine-split vanadium lines in cool star spectra*

```
Y. Shan<sup>1</sup>, A. Reiners<sup>1</sup>, D. Fabbian<sup>1,2,3</sup>, E. Marfil<sup>4</sup>, D. Montes<sup>4</sup>, H. M. Tabernero<sup>5</sup>, I. Ribas<sup>6,7</sup>, J. A. Caballero<sup>5</sup>, A. Quirrenbach<sup>8</sup>, P. J. Amado<sup>9</sup>, J. Aceituno<sup>10,9</sup>, V. J. S. Béjar<sup>11,12</sup>, M. Cortés-Contreras<sup>5</sup>, S. Dreizler<sup>1</sup>, A. P. Hatzes<sup>13</sup>, Th. Henning<sup>14</sup>, S. V. Jeffers<sup>15,1</sup>, A. Kaminski<sup>8</sup>, M. Kürster<sup>14</sup>, M. Lafarga<sup>6,7,16</sup>, J. C. Morales<sup>6,7</sup>, E. Nagel<sup>17,13</sup>, E. Pallé<sup>11</sup>, V. M. Passegger<sup>18,17</sup>, C. Rodriguez-López<sup>9</sup>, A. Schweitzer<sup>17</sup>, and M. Zechmeister<sup>1</sup>
```

Our investigation underlines the fact that HFS can have a dramatic impact on line profiles and on abundance measurements. We suggest that this quantum effect could play an important role in cool star spectroscopy where a number of elements appear to exhibit stronger and wider splitting patterns than in Sun-like stars. We have exploited this property to provide a reasonable assessment of V abundance in the cool photospheres of the most abundant type of stars in the Galaxy. This type of study is made possible with the accessibility of constantly improving laboratory measurements, which are essential and powerful tools for interpreting increasingly complex stellar spectra in new temperature and wavelength regimes.

$$E_F = E_J + \frac{1}{2}A_J \cdot C + \frac{1}{2}B_J \cdot \frac{\frac{3}{4}C(C+1) - J(J+1)I(I+1)}{I(2I-1)J(2J-1)}$$

where E_J is the energy of the fine structure level of quantum number J and C = F(F+1) - J(J+1) - I(I+1).

$$E_F = E_J + \frac{1}{2}A_J \cdot C + \frac{1}{2}B_J \cdot \frac{\frac{3}{4}C(C+1) - J(J+1)I(I+1)}{I(2I-1)J(2J-1)}$$

where E_J is the energy of the fine structure level of quantum number J and C = F(F+1) - J(J+1) - I(I+1).

$$A_J(E_J) = \sum_{SL\gamma,S'L'\gamma'} (E_J|SL\gamma J) \cdot A_J(SL\gamma J, S'L'\gamma' J') \cdot (S'L'\gamma' J|E_J)$$

$$\langle \gamma(SL)JF|H_{\text{hfs}}^{D}|\gamma'(S'L')J'F\rangle = \sqrt{I(I+1)(2I+1)} \cdot (-1)^{J'+I+F} \cdot \begin{cases} J' & I & F \\ I & J & 1 \end{cases}$$

$$\cdot \sum_{\kappa k, nl} [J, J', 1]^{\frac{1}{2}} \cdot \begin{cases} S & S' & \kappa \\ L & L' & k \\ J & J' & 1 \end{cases} \cdot a_{nl}^{\kappa k} \cdot f^{\kappa k} \cdot \left\langle \gamma(SL) \parallel \left(\mathbf{a}^{\dagger}\mathbf{a}\right)^{(\kappa k)} \parallel \gamma'(S'L') \right\rangle$$
 (5.67a)

It follows directly from comparison with equation (3.94):

$$A_{J}(SL\gamma J, S'L'\gamma'J') = \left[\frac{3(2J+1)}{J(J+1)}\right]^{\frac{1}{2}}$$

$$\sum_{\kappa k, nl} \begin{cases} S & S' & \kappa \\ L & L' & k \\ J & J & 1 \end{cases} \cdot a_{nl}^{\kappa k} \cdot f^{\kappa k} \cdot \left\langle \gamma(SL) \parallel \left(\mathbf{a}^{\dagger} \mathbf{a}\right)^{(\kappa k)} \parallel \gamma'(S'L') \right\rangle$$
(5.67b)

Transformation of a fully relativistic expression to *SL*-coupling:

$$S(a,b) = [t]^{-\frac{1}{2}} \sum_{j,j'} [j,j',\kappa,k]^{\frac{1}{2}} \begin{cases} \frac{1}{2} & \frac{1}{2} & \kappa \\ l & l' & k \\ j & j' & t \end{cases} (p \parallel \hat{F}^{(t)} \parallel q)$$

Correct weighting procedure over j and j'!

$$T^{(1)} = -i\sqrt{2} \cdot \alpha \sum_{i} \frac{\left(\alpha_{i}^{(1)} C_{i}^{(1)}\right)^{(1)}}{r_{i}^{2}}$$

$$T^{(1)} = -i\sqrt{2} \cdot \alpha \sum_{i} \frac{\left(\alpha_{i}^{(1)} C_{i}^{(1)}\right)^{(1)}}{r_{i}^{2}}$$

$$T^{(1)} = -\sum_{\kappa k} S_{nl}^{\kappa k} \left(\mathbf{a}^{\dagger} \mathbf{a} \right)^{(\kappa k)1} \quad \text{with } \kappa + k \text{ odd}$$

After application of equation (21.7), one arrives for the magnetic dipole

$$S_{nl}^{\kappa k} = \frac{1}{3}\sqrt{6} \cdot \alpha \sum_{jj'} [j,j'] \cdot [\kappa,k]^{\frac{1}{2}} \cdot \begin{cases} \frac{1}{2} & \frac{1}{2} & \kappa \\ l & l & k \\ j & j' & 1 \end{cases} (-1)^{l} \cdot \begin{pmatrix} j & j' & 1 \\ -\frac{1}{2} & -\frac{1}{2} & 1 \end{pmatrix} \cdot P_{jj'}$$

$$P_{jj'} = \int_0^\infty \frac{F_{nlj} G_{nlj'} + G_{nlj} F_{nlj'}}{r^2} dr$$

J = 5.5Co I: A-values even system A(obs.) A(calc.) Delta E-value Composition 69% 8|4F)3D2H + 18% 8|4F)3D4H + 13% 8|4F)1D4H 6.027 59850.407 6.243 61% 8|4F)3D4G + 30% 8|4F)1D4G + 5% 8|4F)3D4H 59664.827 11.703 64% 6|3F)4H + 26% 6|3F)2H + 10% 6|3F)4G 57578.514 10.459 56649.502 83% 6|3F)4G + 16% 6|3F)2H + 1% 6|3F)4H 11.538 59% 6|3F)2H 56635.917 + 35% 6|3F)4H + 7% 6|3F)4G 13.900 14.583 -0.683 54947.632* 69% 8|4F)3D6H + 17% 8|4F)3D6G + 9% 8 | 4F) 1D4H 20.860 21.327 -0.467 54367.332* 44% 8|4F)3D6G + 23% 8|4F)3D6H + 23% 8|4F)3D6F 20.400 20.949 -0.549 54315.611* 49% 8|4F)1D4H + 28% 8|4F)3D4H + 9% 8|4F)3D6G 29.100 28.847 0.253 71% 8|4F)3D6F + 27% 8|4F)3D6G + 2% 8|4F)3D6H 53660.238* 55% 8|4F)1D4G + 29% 8|4F)3D4G + 28.344 53511.734* 7% 8 | 4F) 1D4H 10.332 0.268 + 26% 4|3F)2H 10.600 52113.842* 62% 4|3F)4H + 11% 4|3F)4G 8.100 9.315 -1.215 51203.690* 87% 4|3F)4G + 9% 4|3F)2H + 4% 4|3F)4H

65% 4|3F)2H

100% 3|2H)2H

100% 9|4F)3S6F + 0% 9|2G)3S4G +

+ 33% 4|3F)4H + 2% 4|3F)4G

+ 0% 9|2H)3S2H +

0% 8|4F)3D6F

0% 4|3F)2H

51174.230*

45675.937*

21780.442*

J= 6.5

8.900

33.470

22.600

10.176

33.931

23.008

-1.276

-0.461

-0.408

A(calc.) Delta E-value Composition A(obs.) 0% 8|4F)3D6H 5.974 59807.746 66% 8|4F)3D4H + 33% 8|4F)1D4H + 9.774 56626.829 100% 6|3F)4H + 0% 6|1G)2I + 0% 8 | 4F) 3D4H 18.700 18.851 -0.151 54452.305* 82% 8|4F)3D6H + 11% 8|4F)3D6G + 5% 8 | 4F) 1D4H 85% 8|4F)3D6G + 14% 8|4F)3D6H + 25.800 25.529 0.271 53728.230* 1% 8 | 4F) 1D4H 61% 8|4F)1D4H + 32% 8|4F)3D4H + 25.000 25.536 -0.536 53617.983* 4% 8 | 4F) 3D6G 7.600 8.648 -1.048 51142.456* 100% 4|3F)4H + 0% 4|1G)2I + 0% 8|2F)3D4H ASOS23, Paris

п	11100.596	11098.603	1.993	1.111	96% 3 2G)2G	+	2% B 2G1S)2G +	1% 1 2G1)
	2424.809	2427.200	-2.391	1.557	97% 2 5D)6D	+	1% 8 4F)3D6D +	1% 8 4P)3D6D
۰	552.955	556.852	-3.897	1.334	97% 3 4F)4F	+	2% B 4F1S)4F +	1% 1 4F)

J= 5.5

Vanadium I: energy fit

	E(calc.)			Composition
	50340.322	_	1.421	71% A 4F)3D6F + 27% A 4F)3D6G + 2% A 4F)3D6H
-	50141.634	-	1.344	52% A 4F)3D6G + 26% A 4F)3D6F + 19% A 4F)3D6H
50114.450	50117.380	-2.930	1.271	63% 9 2G)3S4G + 17% 5 3G)4G + 9% 8 4F)3D4G
49951.709	49961.871	-10.162	1.234	77% A 4F)3D6H + 19% A 4F)3D6G + 2% A 4F)3D6F
	49747.541	-	1.228	37% 6 5D)4G + 9% 5 3H)4H + 9% A 4F)1D4G
49717.572	49727.490	-9.918	1.175	30% 6 5D)4G + 30% 5 3H)4H + 12% 5 3H)2H
	49658.710	-	1.264	28% 6 5D)4G + 21% 8 4F)3D4G + 20% A 4F)1D4G
	49600.249	-	1.103	60% 5 3H)2H + 14% 5 3H)4H + 14% 8 4F)3D2H
-	49249.524	-	1.138	29% A 4F)1D4H + 26% 8 4F)3D4H + 19% 5 3H)4H
	49147.622	-	1.444	88% 6 5D)6F + 9% 6 5D)6G + 2% B 4F3P)6F
-	48985.875	-	1.354	88% 6 5D)6G + 9% 6 5D)6F + 1% 4 5D)6G
44746.714	44686.750	59.964	1.273	48% 4 5D)4G + 31% 8 4F)1D4G + 14% 8 4F)3D4G
	44389.992	-	1.278	45% 4 5D)4G + 28% 8 4F)1D4G + 12% 8 4F)3D4G
44326.651	44334.170	-7.519	1.409	62% 8 4F)3D6F + 32% 8 4F)3D6G + 2% 4 5D)4G
44193.427	44173.592	19.835	1.199	47% 8 4F)1D4H + 20% 8 4F)3D4H + 16% 8 4F)3D6G
44139.591	44132.936	6.655	1.311	42% 8 4F)3D6G + 22% 8 4F)3D6F + 12% 8 4F)1D4H
43894.149	43890.623	3.526	1.212	87% 8 4F)3D6H + 7% 8 4F)3D6G + 2% 8 4F)1D4H
42578.093	42574.255	3.838	1.452	95% 4 5D)6F + 3% 4 5D)6G + 1% 6 5D)6F
42257.394	42258.703	-1.309	1.347	95% 4 5D)6G + 3% 4 5D)6F + 1% 8 4F)3D6G
-	40664.827	-	1.089	93% 1 2H) + 2% 3 2H)2H + 1% B 2H1S)2H
-	38221.912	-	0.925	98% 1 2I) + 1% 1 2H) + 0% B 2H3P)2I
37931.460	37910.403	21.057	1.456	99% 9 4F)3S6F + 0% 4 5D)6F + 0% 8 4F)3D6F
32417.169	32411.187	5.982	1.273	97% 1 4G) + 1% B 4F1D)4G + 0% 4 5D)4G
22496.546	22502.257	-5.711	0.923	97% 2 1I)2I + 1% 8 2H)3D2I + 1% B 2H1D)2I
19145.148	19144.516	0.632	1.091	93% 2 3H)2H + 3% 3 2H)2H + 1% B 2H1D)2H
17242.070	17242.115	-0.045	1.273	97% 2 3G)4G + 1% B 4F1D)4G + 0% 2 3H)4H
15264.832	15266.668	-1.836	1.091	93% 3 2H 2H + 3% 2 3H 2H + 2% 1 2H
15000.937	14997.904	3.033	1.134	97% 2 3H)4H + 1% 8 2H)3D4H + 1% B 4F1D)4H

8.754	8.396	0.358	14949.359*	97% 2 3H)4H	+	1% 8 2H)3D4H +	1% B 4F1D)4H
9.960	10.208	-0.248	11100.596*	96% 3 2G)2G	+	2% B 2G1S)2G +	1% 1 2G1)
13.571	14.593	-1.022	2424.809*	97% 2 5D)6D	+	1% 8 4F)3D6D +	1% 8 4P)3D6D
7.576	8.027	-0.451	552.955*	97% 3 4F)4F	+	2% B 4F1S)4F +	1% 1 4F)
				·		·	

Vanadium I: A-values (mK)

J = 5.5

A(obs.)	A(calc.)	Delta	E-value	Composition
A(obs.)	11.674 7.124 5.855 8.063 8.803 8.899 3.686 2.812 10.616 10.903 18.491 12.833 14.534 10.264	Delta 2.217 4.494 1.611	49951.709* 49747.541 49717.572* 49658.710 49600.249 49249.524 49147.622 48985.875 44746.714* 44389.992 44326.651* 44139.591* 43894.149*	77% A 4F 3D6H + 19% A 4F 3D6G + 2% A 4F 3D6F 37% 6 5D)4G + 9% 5 3H)4H + 9% A 4F)1D4G 30% 6 5D)4G + 30% 5 3H)4H + 12% 5 3H)2H 28% 6 5D)4G + 21% 8 4F)3D4G + 20% A 4F)1D4G 60% 5 3H)2H + 14% 5 3H)4H + 14% 8 4F)3D2H 29% A 4F)1D4H + 26% 8 4F)3D4H + 19% 5 3H)4H 88% 6 5D)6F + 9% 6 5D)6G + 2% B 4F3P)6F 88% 6 5D)6G + 9% 6 5D)6F + 1% 4 5D)6G 48% 4 5D)4G + 31% 8 4F)1D4G + 14% 8 4F)3D4G 45% 4 5D)4G + 28% 8 4F)1D4G + 12% 8 4F)3D4G 62% 8 4F)3D6F + 32% 8 4F)3D6G + 2% 4 5D)4G 47% 8 4F)1D4H + 20% 8 4F)3D6F + 12% 8 4F)3D6G 42% 8 4F)3D6G + 2% 8 4F)1D4H 87% 8 4F)3D6H + 7% 8 4F)3D6F + 2% 8 4F)1D4H 87% 8 4F)3D6H + 7% 8 4F)3D6G + 2% 8 4F)1D4H
2.135 - - 20.991 3.282 - 5.370 15.468 9.930 12.497	3.453 3.192 7.906 8.382 21.051 6.903 3.333 6.446 14.860 10.467 12.161	-1.057 	42578.093* 42257.394* 40664.827 38221.912 37931.460* 32417.169* 22496.546* 19145.148* 17242.070* 15264.832* 15000.937*	95% 4 5D)6F + 3% 4 5D)6G + 1% 6 5D)6F 95% 4 5D)6G + 3% 4 5D)6F + 1% 8 4F)3D6G 93% 1 2H) + 2% 3 2H)2H + 1% B 2H1S)2H 98% 1 2I) + 1% 1 2H) + 0% B 2H3P)2I 99% 9 4F)3S6F + 0% 4 5D)6F + 0% 8 4F)3D6F 97% 1 4G) + 1% B 4F1D)4G + 0% 4 5D)4G 97% 2 1I)2I + 1% 8 2H)3D2I + 1% B 2H1D)2I 93% 2 3H)2H + 3% 3 2H)2H + 1% B 2H1D)2H 97% 2 3G)4G + 1% B 4F1D)4G + 0% 2 3H)4H 93% 3 2H)2H + 3% 2 3H)2H + 2% 1 2H) 97% 2 3H)4H + 1% 8 2H)3D4H + 1% B 4F1D)4H

Vanadium I: two levels, good case

Table 1: Energy levels in cm⁻¹ and % composition of two $3d^44s^2$ J= $\frac{3}{2}$ levels in V I.

$E_e(\mathrm{cm^{-1}})$	$E_c(\mathrm{cm^{-1}})$	$\mathrm{E}_o(\mathrm{cm}^{-1})$	Δ_{ec}	Δ_{eo}	$^{2}\mathrm{P}$	$^2\mathrm{D1}$	$^2\mathrm{D2}$
13801.551	13616.6	13807.930	185.0	-6.4	79 69	- 6	6 18
14514.756	14610.8	14499.834	-96.0	14.9	7 23	20 16	64 53

Vanadium I: two levels, good case

Table 1: Energy levels in cm⁻¹ and % composition of two $3d^44s^2$ J= $\frac{3}{2}$ levels in V I.

$E_e(\mathrm{cm^{-1}})$	$E_c(\mathrm{cm^{-1}})$	$\mathrm{E}_o(\mathrm{cm}^{-1})$	Δ_{ec}	Δ_{eo}	$^{2}\mathrm{P}$	$^2\mathrm{D1}$	$^2\mathrm{D2}$
13801.551	13616.6	13807.930	185.0	-6.4	79 69	- 6	6 18
14514.756	14610.8	14499.834	-96.0	14.9	7 23	20 16	64 53

Table 2: Landé g_J -factors and A-values of two $3d^44s^2$ $J=\frac{3}{2}$ levels in V I.

$\mathrm{E}_e(\mathrm{cm}^{-1})$	g_e	g_c	g_o	Δ_{ec}	Δ_{eo}	$A_e(mK)$	$A_o(mK)$
13801.551	1.20	1.292	1.201	-0.092	-0.001	11.120	10.494
14514.756	0.97	0.844	0.936	0.126	0.034	11.392	11.183

 $3d^4$ 6s

 $3d^3 4s 4d$

 $3d^3 4s 5s$

 $3d^3 4s 5d$

 $3d^3 4p^2$

Vanadium I: two levels, bad case

Table 4: Energy levels in cm⁻¹ and % composition of two $3d^44s^2$ J= $\frac{1}{2}$ levels in V I.

١	$E_e(\mathrm{cm^{-1}})$	$E_c(\mathrm{cm^{-1}})$	$E_o(\text{ cm}^{-1})$	Δ_{ec}	Δ_{eo}	$2 ^4D$	$2 ^{6}D$	$8 ^6\mathrm{D}$	$8 ^4D$	$\mathrm{B} ^{4}\mathrm{D}$
	2112.282	2044.9	2108.953	67.4	3.3	0 0	100 97	0 2	0 0	0 0
	8413.009	8364.1	8403.516	48.9	9.5	97 95	0 0	0 0	0 2	2 2

1 | 3d⁵ 2 | 3d⁴ 4s 3 | 3d³ 4s² 4 | 3d⁴ 4d 5 | 3d⁴ 5s 6 | 3d⁴ 5d 7 | 3d⁴ 6s 8 | 3d³ 4s 4d 9 | 3d³ 4s 5s A | 3d³ 4s 5d

 $3d^3 4p^2$

Vanadium I: two levels, bad case

Table 4: Energy levels in cm⁻¹ and % composition of two $3d^44s^2$ J= $\frac{1}{2}$ levels in V I.

$E_e(\mathrm{cm^{-1}})$	$E_c(\mathrm{cm^{-1}})$	$E_o(\text{ cm}^{-1})$	Δ_{ec}	Δ_{eo}	$2 ^4D$	$2 ^{6}D$	$8 ^6D$	$8 ^4D$	$\mathrm{B} ^{4}\mathrm{D}$
2112.282	2044.9	2108.953	67.4	3.3	0 0	100 97	0 2	0 0	0 0
8413.009	8364.1	8403.516	48.9	9.5	97 95	0 0	0 0	0 2	2 2

Table 5: Landé g_J-factors and A-values of two $3d^44s^2$ J= $\frac{1}{2}$ levels in V I.

$E_e(\mathrm{cm^{-1}})$	g_e	g_c	g_o	Δ_{ec}	Δ_{eo}	$A_e(mK)$	$A_o(mK)$
2112.282	3.338	3.338	3.338	0.000	0.000	25.077	31.667
8413.009	0.00	-0.001	-0.001	0.001	0.001	42.650	30.118

1 2 3 4 5 6 7	3d ⁵ 3d ⁴ 4s 3d ³ 4s ² 3d ⁴ 4d 3d ⁴ 5s 3d ⁴ 5d 3d ⁴ 6s	\	/anad	ium I	: low	est leve	els		
8 9 A B	3d ³ 4s 4d 3d ³ 4s 5s 3d ³ 4s 5d 3d ³ 4p ²	J=4.5	13.571 7.576	14.593 8.027	-1.022 -0.451		97% 2 5D)6D 97% 3 4F)4F		1% 8 4F)3D6D 2% B 4F1S)4F
		J=3.5	12.754 8.331	13.824 8.642	-1.070 -0.311		97% 2 5D)6D 97% 3 4F)4F		1% 8 4F)3D6D 2% B 4F1S)4F
		J=2.5	12.462 10.715	13.703 10.619	-1.241 0.096	2220.156* 137.383*	97% 2 5D)6D 97% 3 4F)4F		1% 8 4F)3D6D 2% B 4F1S)4F
		J=1.5	13.530 18.682	15.410 17.247	-1.880 1.435	2153.221* 0.000*	97% 2 5D)6D 97% 3 4F)4F	++	1% 8 4F)3D6D 2% B 4F1S)4F
		J=0.5	42.650 25.077	30.121 31.666	12.529 -6.589	8413.009* 2112.282*	95% 2 5D)4D 97% 2 5D)6D	++	2% B 4F1D)4D 1% 8 4F)3D6D
AS	OS23, Paris								

Scope Orthogonal operators: Lanthanides & Actinides

- Configurations: $f^n + f^{n-1}(s + p + d) + \dots$
- Core excited: $p^5 f^{n+1} + p^5 f^n (s + p + d)$...

	Pr III(f ³)	DHF	B-spl	Pr IV(f ²)	B-spl	Nd IV(f³)	DHF	B-spl	Nd V(f ²)	B-spl
\mathbf{E}_{av}	19709.2			10202.8		24892.1			12248.6	
E'_1	4924.8			60446.9		6393.5			7101.1	
\mathbf{E}_{2}	2191.5			2526.1		2671.0			2915.5	
E_3	4942.9			5899.7		6197.9			6835.0	
\mathbb{E}'_{α}	301.7			236.7		224.5			225.6	
$\mid E'_{\beta} \mid$	0			6.0		7.6			8.0*	
\mathbf{E}_{γ}'	448.1			290.0		261.0			250*	
T_2'	122.7					64.4				
T_3	14.7					14.8				
$\mid T_4 \mid$	24.5					16.0				
T_6	-49.5					-54.7				
$\mid T_7 \mid$	60.3					60.2				
T_8	51.7					53.0				
ζ_f	660.7	609.2	711.4	764.6	813.4	892.4	843.0	944.0	998.4	1047.7
$ A_5$	-2.7	-2.9	-2.7	-2.4	-2.0	-3.8	-2.9	-2.6	-3.7	-2.2
A ₆	4.5	4.3	4.5	4.2	3.6	4.4	4.6	4.5	4.4	4.1
A_7	-2.3	-2.5	-2.3	-2.8	-2.4	-0.8	-3.0	-2.8	0	-3.0
A_8	4.6	5.2	4.6	5.7	5.0	5.1	6.4	5.8	5.7	6.3
A_9	1.3	0.5	1.3	5.4	5.1	4.3	3.9	4.8	5.9	7.8
A ₁₀	-3.8	-4.3	-3.8	-2.6	-2.2	-2.8	-3.6	-3.0	-2.3	-2.0
A ₁₁	-5.1	-5.6	-5.1	-4.2	-3.5	-3.8	-5.4	-4.6	-3.5	-3.7
A' ₁₂	-10.5	-10.6	-9.0	-6.0	-4.8	-8.2	-8.6	-7.0	-6.7	-4.1
A_1	0.2	-0.5	0.2	0.3	0.3	0.3	0.7	0.3	0.4	0.3
A_2	-0.6	-0.4	-0.6	-0.8	-0.7	-0.8	-0.3	-0.8	-1.0	-0.9
A_3	0.1	0.5	0.1	0.1	0.1	0.1	0.1	0.3	0.1	0.1
A_4	-1.2	-0.0	-1.2	-1.7	-1.5	-1.7	0.1	-1.7	-2.2	-2.0
σ	14.2			6.9		7.6			3.8	

Some Lanthanide parameters

```
J = 5.5
                                                      Nd IV, 4f^3
  E(obs.) E(calc.)
                               Delta
                                        Mixd.g-fac.
                                                                              Composition
  35136.610
               35135.380
                                 1.230
                                              1.065
                                                     68% 1|2H1)
                                                                    + 16% 1|2I )
                                                                                     + 14% 1|2H2)
                                                     83% 1|2I ) + 15% 1|2H1)
  30179.930
               30182.298
                                -2.368
                                              0.952
                                                                                     + 1% 1|2H2)
                                                     93% 1|4G ) + 4% 1|2H1) + 3% 1|2H2)
80% 1|2H2) + 13% 1|2H1) + 5% 1|4G )
99% 1|4I ) + 1% 1|2H2) + 0% 1|2H1)
  22047.390
               22044.330
                                 3.060
                                             1.261
  16161.530
              16161.950
                                -0.420
                                             1.099
  1897.110
              1894.913
                                2.197
                                              0.966
J = 6.5
  E(obs.) E(calc.)
                               Delta
                                        Mixd.q-fac.
                                                                              Composition
                                0.420
  31582.850
               31582.430
                                             1.076 	 99\% 	 1|2I) 	 + 	 1\% 	 1|2K) 	 + 	 0\% 	 1|4I)
  20005.220
               20011.260
                                -6.040
                                              0.935
                                                     99% 1|2K ) + 1% 1|2I ) + 0% 1|4I )
                                                    100% 1|4I ) + 0% 1|2K )
                                                                                     + 0% 1|2I)
  3907.430
              3909.988
                                -2.558
                                             1.107
J = 7.5
  E(obs.) E(calc.)
                               Delta
                                        Mixd.g-fac.
                                                                              Composition
  31036.000
               31037.304
                                -1.304
                                              0.946
                                                     96% 1|2L ) + 4% 1|2K )
                                                                                     + 0% 1|4I)
                                                     95% 1|2K ) + 4% 1|2L )
                                1.629
                                                                                  + 1% 1 | 4I )
  22043.770
               22042.141
                                             1.063
  5988.510
                5993.501
                                -4.991
                                             1.199
                                                     99% 1|4I )
                                                                    + 1% 1|2K )
                                                                                     + 0% 1|2L)
```

ASOS23, Paris

J= 7.5				Е	r IV, 4 <i>f</i>	11 + 4 f^{1}	$^{0}6p$
E(obs.)	E(calc.)	Delta M	Mixd.g-fac.		Compos	ition	
170771.010 165670.200 161112.630 155801.730 153525.140 147031.140 - 28312.440 0.000	176633.644 170787.321 165683.409 161111.297 155802.751 153536.379 147027.318 48803.581 28275.654 -49.982	- -16.311 -13.209 1.333 -1.021 -11.239 3.822 - 36.786 49.982	0.993 1.136 1.120 1.183 1.233 1.153 1.279 0.948 1.064 1.197	33% 2 3K2)4L 35% 2 3K2)4I 54% 2 5I)6K 53% 2 5I)6I 61% 2 5I)4I 34% 2 5I)6K 57% 2 5I)6H 95% 1 2L) 92% 1 2K) 97% 1 4I)	+ 12% 2 3K2)4K + 11% 2 3K1)4I + 37% 2 5I)4K + 28% 2 5I)4K + 29% 2 5I)6H + 30% 2 5I)4K + 18% 2 5I)4I + 5% 1 2K) + 5% 1 2L) + 3% 1 2K)	+ 12% 2 3K2)2L + 9% 2 3K2)2K + 2% 2 3H4)4I + 7% 2 5I)4I + 3% 2 5I)6I + 23% 2 5I)6I + 15% 2 5I)6I + 0% 1 4I) + 3% 1 4I) + 0% 1 2L)	+ 10% 2 3K1)4L + 9% 2 3K2)4K + 2% 2 5I)6I + 7% 2 5I)6K + 3% 2 3K2)2K + 6% 2 5I)4I + 4% 2 3K2)4I + 0% 2 3M)2L + 0% 2 1L1)2K + 0% 2 3K1)4I
J= 8.5							
E(obs.)	E(calc.)	Delta M	Mixd.g-fac.		Compos	ition	
171139.220 161334.420 155006.200 147457.990 42580.900	171128.295 161347.885 154995.488 147445.611 42565.349	10.925 -13.465 10.712 12.379 15.551	1.081 1.200 1.240 1.219 1.059	22% 2 3K2)2L 76% 2 5I)6K 56% 2 5I)6I 40% 2 5I)4K 100% 1 2L)	+ 17% 2 3K2)4K + 18% 2 5I)4K + 34% 2 5I)4K + 36% 2 5I)6I + 0% 2 3K1)2L	+ 16% 2 3K2)4L + 2% 2 5I)6I + 3% 2 3K2)4K + 17% 2 5I)6K + 0% 2 3M)2L	+ 7% 2 3K1)2L + 1% 2 3K2)4L + 3% 2 5I)6K + 2% 2 3K2)2L + 0% 2 3L)2L

J = 8.0Yb V, $4f^{11}6p$, DHF E(obs.) E(calc.) Delta Mixd.g-fac. Composition 42% 1|2L)3L 80127.010 80130.881 -3.871 0.995 + 39% 1|2L)1L + 14% 1|2L)3M 72687.310 72686.440 0.870 1.082 48% 1|2I)3K + 21% 1|2L)1L + 15% 1|2L)3K -1.172 43% 1|2I)3K + 26% 1|2L)1L + 22% 1|2L)3L 70989.660 70990.832 1.063 66559.670 66559.708 -0.038 0.914 80% 1|2L)3M + 8% 1|2L)3L + 6% 1|2L)1L 58490.410 58490.586 -0.176 1.100 77% 1|2L)3K + 12% 1|2L)3L + 7% 1|2L)1L 1.021 46% 1|2K)3L + 42% 1|2K)1L + 7% 1|2I)3K 55164.010 55165.716 -1.706 1.096 + 16% 1|2K)1L 49947.580 49950.607 -3.027 72% 1|2K)3K + 5% 1|2K)3L 38002.090 37999.398 2.692 1.030 40% 1|2K)3L + 33% 1|2K)1L + 19% 1|2K)3K 19203.420 19205.866 -2.446 1.149 74% 1|4I)5K + 22% 1|4I)3K + 3% 1|4I)5I 1.209 68% 1|4I)5I 11383.350 11383.821 -0.471 + 28% 1|4I)3K + 2% 1|2K)3K 47% 1|4I)3K 578.210 571.792 6.418 1.163 + 27% 1|4I)5I + 23% 1|4I)5K J = 9.0E(obs.) E(calc.) Delta Composition Mixd.g-fac. 1.012 49% 1|2L)3M + 45% 1|2L)1M + 5% 1|2K)3L 76511.210 76512.294 -1.084 71742.850 71743.171 -0.321 1.092 82% 1|2L)3L + 13% 1|2L)1M + 4% 1|2L)3M 58676.690 58674.390 2.300 1.023 44% 1|2L)3M + 39% 1|2L)1M + 17% 1|2L)3L 47727.100 47727.277 -0.177 1.109 93% 1|2K)3L + 3% 1|2L)3M + 3% 1|4I)5K

1.220

97% 1|4I)5K + 3% 1|2K)3L

+ 0% 1|2L)3M

10305.360

10303.043

2.317

J= 7.0			,	Yb V, 4 <i>1</i>	$f^{12} + 4f^{11}6p$
E(obs.)	E(calc.)	Delta	Mixd.g-fac.		Composition
- 273216.250 269233.490 260750.180 257348.770 247890.510	284318.314 283415.991 273210.150 269236.980 260749.765 257349.454 247895.864	- 6.100 -3.490 0.415 -0.684 -5.354	1.119 1.156 1.070 1.130 1.180 1.077 1.240	52% 2 2K)3I 33% 2 2H2)3I 36% 2 4I)5K 58% 2 4I)5I 64% 2 4I)3I 43% 2 4I)5K 65% 2 4I)5H	+ 12% 2 2K)3K + 10% 2 4G)5H + 27% 2 4G)5H + 13% 2 2K)3I + 35% 2 4I)3K + 21% 2 2H2)3I + 23% 2 4I)3K + 11% 2 4I)3I + 26% 2 4I)5H + 7% 2 4I)5I + 29% 2 4I)3K + 18% 2 4I)5I + 16% 2 4I)3I + 14% 2 4I)5I
J= 8.0 E(obs.)	E(calc.)	Delta	Mixd.g-fac.		Composition
- 268532.230 260218.140 248573.040	284400.720 268534.752 260226.054 248576.376	- -2.522 -7.914 -3.336	1.031 1.148 1.208 1.164	39% 2 2K)3L 74% 2 4I)5K 67% 2 4I)5I 46% 2 4I)3K	+ 22% 2 4I) 3K + 3% 2 4I) 5I
J= 9.0 E(obs.)	E(calc.)	Delta	Mixd.g-fac.		Composition
259305.050	259308.268	-3.218	1.219	97% 2 4I)5K	+ 3% 2 2K)3L + 0% 2 2L)3M