Coronal Magnetic Field Measurements from EUV wavelengths

Wenxian Li wxli@nao.cas.cn

National Astronomical Observatories, Chinese Academy of Sciences, China

ASOS14, PARIS, JULY 10 - 14, 2023

Collaborators:

Atomic method, theory and calculations: Lund University/Malmö University: Tomas Brage and LUMCAS group Queen's University Belfast: Connor Balance

Laboratory measurement:

Fudan University: Roger Hutton and Shanghai-EBIT laboratory

Solar observations and applications: Peking University: Hui Tian group High Altitude Observatory: Philip G. Judge University of Michigan: Enrico Landi

Outline

Coronal Magnetic Fields

Magnetic-field Induced Transitions (MITs)

- Introduction to MIT
- MIT in Fe X

Applications of Fe X MIT in solar/stellar coronal magnetic field measurements

- Methodology
- Forward modeling with 3D MHD model
- Application to Hinode/EIS observations

Discussions and Summary

Magnetized solar atmosphere

If the Sun did not have a magnetic field, it would be as uninteresting as most astronomers consider it to be. ——Robert Leighton

solar cycle, structuring, solar eruptions, coronal heating

2000/07/14 10:24

Schematic of Zeeman splitting and polarization of the π and σ components (Reiners, LRSP, 9,1, (2012))

Accurate and routine measurements of solar magnetic field achieved at the photospheric level (e.g., HSOS, SDO/HMI, ASOS-FMG)

How to measure the coronal magnetic field?

Spectropolarimetry of the visible and near-infrared coronal emission lines (Lin et al. 2004, ApJL)

magnetoseismology (Yang et al. 2020, Science)

radio imaging observations (Fleishman et al. 2020, Science)

Extrapolation from photospheric magnetic field (Wiegelmann and Solanki 2004)

Outline

Coronal Magnetic Fields

Magnetic-field Induced Transitions (MITs)

- Introduction to MIT
- MIT in Fe X
- Applications of Fe X MIT in solar/stellar coronal magnetic field measurements
 - Methodology
 - Forward modeling with 3D MHD model
 - Application to Hinode/EIS observations

Discussions and Summary

Magnetic-field Induced Transitions, MITs

A simple three-level system (Grumer et al. 2014)

- State j has a "fast" decay channel to the ground state k; strong spectral feature
- State *i* is metastable; small transition probability $A(i \rightarrow k)$

$$H = H_{fs} + H_m = H_{fs} + (N^{(1)} + \Delta N^{(1)}) \cdot B$$

$$\Psi_i = \sum_j c_j^i \Phi_i \qquad c_j^i \approx \frac{\langle \Psi_j^0 | H_m | \Psi_i^0 \rangle}{E_i^0 - E_j^0}$$

 External magnetic fields mix states *i* and *j*; a "new" transition channel *i* → *k*: magnetic-field induced transition (MIT)

$$\begin{aligned} A_{MIT}(i \to k) &\approx \left| c_j^i \right|^2 A(j \to k) \\ &\propto A(j \to k) \frac{B^2}{\lambda^3 (\Delta E_{ij})^2} \end{aligned}$$

GRASP(Jönsson et al. 2023)+HFSZEEMAN (Li et al. 2020)

Zeeman quenching: shorten the lifetime of long-lived levels (Feldman et al., 1967; Balling et al., 1992; Andersen et al., 1993; Mannervik et al. 1997; Schef et al. 2005)

Schef et al. 2005: lifetime measurement of metastable states in Xe II in Ion Storage Ring + laser probing

Lifetime curves of the 5d ${}^{4}D_{7/2}$ level in ${}^{132}Xe^{+}$ recorded at different beam energies.

Measurement of MIT in the Laboratory

Ne-like ions in Electron Beam Ion Trap (EBIT)

Ar IX: Beiersdorfer et al. PRL, 2003

Fe XVII: Beiersdorfer et al. ApJ, 2016

Potential for magnetic field strength diagnostics
Be-, Ne- and Mg-like ions: MITs are generally very weak for small external fields.

MIT in Fe X

Li et al. ApJ, 2015, 2016, 2021

- ΔE from EBIT measurements: 3.5 cm⁻¹ with upper limit of 7.8 cm⁻¹ (Li et al. ApJ, 2016)
- double Gaussian fit for lines from the same upper level to ⁴D_{7/2,5/2}
- ✓ SO82-B/SKYLAB spectra: 3.6 ± 2.7 cm⁻¹ (Judge et al. ApJ, 2016)
- ✓ SoHO/SUMER spectra: 2.29 ± 0.5 cm⁻¹ (Landi et al. ApJ, 2020)

Laboratory measurement of MIT in Fe X at different magnetic fields@ SH-Htsc EBIT (Xu et al. 2022, ApJ)

Outline

Coronal Magnetic Fields

Magnetic-field Induced Transitions (MITs)

- Introduction to MIT
- MIT in Fe X

Applications of Fe X MIT in solar/stellar coronal magnetic field measurements

- Methodology
- Forward modeling with 3D MHD model
- Application to Hinode/EIS observations

Discussions and Summary

Coronal magnetic field diagnostics using MIT method

compare the observed 257/Ref. with theoretical predictions LR(T,N,B)

- Reference line: insensitive to B
- Density diagnostic: intensity ratio with Fe X 174/175
- Temperature diagnostic: intensity ratio with Fe X 184/345
- ^{IS/S}Spectral modelling: CHIANTI database, Int(T,N,B)

Forward modeling with a 3D MHD model (Chen et al. 2021, ApJ)

- Construct MHD models of solar corona for a range of activity levels
- establish an atomic database of the Fe x ion (Chianti+MIT)
- synthesize the emissions of Fe x lines from 3D MHD model
- Density diagnostics: Fe X 175/174 ratio
- Temperature diagnostics: constant or Fe X 184/345 ratio
- Derive the magnetic field strengths using the intensity ratios 257/Ref.
- compare the derived field strengths with those in the models

$$B_0 = \frac{\int_{LOS} \epsilon_{174}(s) \cdot B(s) ds}{\int_{LOS} \epsilon_{174}(s) ds}$$

Forward modeling with a 3D MHD model (Chen et al. 2021, ApJ)

Hinode/EIS Measurements of Solar Coronal Magnetic Fields

Hinode/EIS:

solar corona and upper transition region emission lines in the wavelength ranges 170 - 210 Å (SW) and 250 - 290 Å (LW)

- 174 and 175 as reference lines (Si et al., ApJL, 2020)
- 174/175 for density determination
- Constant temperature of log T/K = 6.0
- observed intensity ratios from Brown et al. ApJS, 2008, an active region observed on Nov. 4, 2006 on the solar disk from Hinode/EIS

The field strength was determined to be around 270 G.

- reference line: 184 Å (Landi et al. ApJ, 2020, 2021)
- Density measurement: Fe X 174/175
- Constant temperature of log T/K = 6.0

AR10978

Outline

Coronal Magnetic Fields

Magnetic-field Induced Transitions (MITs)

- Introduction to MIT
- MIT in Fe X

Applications of Fe X MIT in solar/stellar coronal magnetic field measurements

- Methodology
- Forward modeling with 3D MHD model
- Application to Hinode/EIS observations

Discussions and Summary

Limitations and uncertainties

- Only field strength can be measured, but not the direction
- Uncertainty in atomic data:

∆E: 20% uncertainty from the SUMER measurements (Landi et al. 2020) CHIANTI v10 – transition and collisional data from R-matrix (Del Zanna et al. 2012)

Wang et al. 2020, Li et al. 2021, 2022 :

- large-scale MCDHF calculations for levels and radiative data for states up to n=4
- Dirac Atomic R-matrix calculation for electron-impact collision strengths

Density map obtained with different atomic data

- the absorption of the Fe X emission from cool plasma significantly affects the accuracy of density and magnetic field diagnostics(Martínez-Sykora et al. 2022)
- Intensity calibration: short-(reference lines) and longwavelength (257 Å line)
- Temperature measurement

Chen et al. 2023, MNRAS

Summary

- The pseudo-degeneracy of two levels in Fe X causes the magnetic-fieldinduced transition, MIT@257 Å line to be sensitive to the relatively small magnetic fields expected in the solar corona.
- Forward modeling with 3D MHD models has verified that the MIT technique could provide reasonably accurate solar and stellar coronal magnetic field measurements.
- The MIT method has been applied to HINODE/EIS observations and illustrates the potential of a new diagnostic technique for coronal field strength measurement.
- Further efforts are necessary on both theoretical and observational side to provide a better estimation of magnetic field using the MIT method.
- It is also highly desirable to combine different magnetic field techniques to achieve a better understanding of coronal magnetism.

Thanks for your attention!