

The 14th International Colloquium on Atomic Spectra and Oscillator Strengths for Astrophysical and Laboratory Plasmas

SPECTROSCOPY STUDIES OF MODERATELY CHARGED TUNGSTEN, SULFUR, AND CHLORINE IONS AT THE SH-HTSCEBIT

Jun Xiao

Shanghai EBIT Laboratory, Key Laboratory of Nuclear Physics and Ion-Beam Application (MOE), Institute of Modern Physics, Fudan University, Shanghai 200433, China

Paris, 2023-07-12

Outline

- Background
- Tungsten Spectroscopy
- Chlorine & Sulfur Spectroscopy
- Summary

The Shanghai EBITs

ShanghaiEBIT~150keV

SH-PermEBIT~60eV

SH-HtscEBIT~30eV

Livermore, NIST, Heidelberg, Tokyo, ...EBITs

What can EBIT do?

- **Dielectronic Recombination** •
- Provide atomic data for astrophysical, ICF, MCF plasma •
- For Plasma Diagnostics, e.g. Ne, Te, B... •
- Fundamental studies e.g. QED Test... •
- HCI clock

SH-HtscEBIT and Experimental Setup

SH-HtscEBIT and Experimental Setup

Part I:Tungsten data are needed!

Moderately Charged Tungsten Ions

Ζ

 H_{DC}

 $= \sum_{i=1}^{N} h_d(i) + \sum_{i<j}^{N} \frac{1}{r_{ij}}$ $\Psi(\Gamma PJ) = \sum_{i=1}^{M} c_i \Phi(Y_i PJ)$

Theoretical Methods

-Relativistic Configuration Interaction (RCI)

Relativistic Many-Body Perturbation Theory (RMBPT)

Multi configuration Dirac-Hartree-Fock(MCDHF)

$$I_{i,j}(\lambda) \propto N_i A_{i,j} \phi(\lambda)$$
Collisional Radiative Model(CRM)
$$\frac{dN_i}{dt} = \sum_{j>i} (A_{j \to i}^r N_j) + \sum_{j < i} (C_{j \to i}^e N_j n_e) + \sum_{j > i} (C_{j \to i}^d N_j n_e) \\ - \sum_{j < i} (A_{i \to j}^r N_i) - \sum_{j > i} (C_{i \to j}^e N_i n_e) - \sum_{j < i} (C_{i \to j}^d N_i n_e)$$
collisional (de)excitation
radiative decay

FAC

GRASP

$$\frac{dN_i}{dt} = 0 \qquad \sum_i N_i = 1$$

Indirect Ionization from W⁴⁺–W⁷⁺

Collaborated with C.Y. Cheng, J.G. Li, K. Wang

Q. Lu et. al, PRA, 99, 042510 (2019)

DE

Indirect Ionization from W⁴⁺–W⁷⁺

C.L. Yan et. al, PRA, 105, 032830 (2022) 13

Indirect Ionization from W⁴⁺–W⁷⁺

W⁶⁺: 50–80 eV(solid line), ground to $4f^{13}5p^55d^2 \& 4f^{12}5d^2$, to EA 80–122 eV(dashed line), ground to $5p^55d \& 4f^{13}5d$, to EA

W⁵⁺: 35–65 eV, ground to
$$5p^55d^2$$
和 $4f^{13}5d^2$, to EA

C.L. Yan et. al, PRA, 105, 032830 (2022) 14

Large scale RCI calculation for W⁸⁺

4f¹³5s²5ps 4d¹⁰ f¹³5s²5ps f

537,988levels

the 4 d and 4 f electron correlation

PHYSICAL REVIEW A 103, 022808 (2021)

Fudan University China

Visible spectra of W⁸⁺ in an electron-beam ion trap

Q. Lu (陆祺峰),¹ C. L. Yan (严成龙),¹ J. Meng (孟举),² G. Q. Xu (许帼芹),¹ Y. Yang (杨洋),¹ C. Y. Chen (陈重阳),¹ J. Xiao (肖君),^{1,*} J. G. Li (李冀光),^{2,†} J. G. Wang (王建国),² and Y. Zou (邹亚明)¹ ¹Shanghai EBIT Laboratory, Key Laboratory of Nuclear Physics and Ion-Beam Application (MOE), Institute of Modern Physics, Fudan University, Shanghai 200433, China

²Institute of Applied Physics and Computational Mathematics, Beijing 100088, China

More Spectroscopy works for W¹⁰⁺, W¹¹⁺, W¹²⁺

Journal of Quantitative Spectroscopy & Radiative Transfer 262 (2021) 107533

Contents lists available at ScienceDirect

Journal of Quantitative Spectroscopy & Radiative Transfer

journal homepage: www.elsevier.com/locate/jqsrt

Measurement and identification of visible lines from W¹⁰⁺

IOP Publishing

J. Phys. B: At. Mol. Opt. Phys. 55 (2022) 045001 (8pp)

Journal of Physics B: Atomic, Molecular and Optical Physics https://doi.org/10.1088/1361-6455/ac5432

Re-investigation and line identifications for W^{11+} in the visible range

Journal of Quantitative Spectroscopy & Radiative Transfer 279 (2022) 108064

Experimental and theoretical investigations of visible spectra of W12+

uantitative pectroscopy 8

adiative

Q. Lu^a, N. Fu^a, C.L. Yan^a, F.H. Qu^a, Y. Yang^a, K. Wang^{b,*}, C.Y. Chen^a, Y. Zou^a, J. Xiao^{a,*}

*Shanghai EBIT Laboratory, Key Laboratory of Nuclear Physics and Ion-Beam Application (MOE), Institute of Modern Physics, Fudan University, Shanghai 200433, China
*Inbels Key Lab of Optic-electronic Information and Materials, The College of Physics Science and Technology, Hebei University, Baoding 071002, China

Side Product

Large scale RCI calculation of energy levels in W^{9+}

Ground states selection

Comparison with GRASP:

• Large-scale calculation makes the deviation of 3-ground reduce from 14.40% to 3.24% and the deviation of 4-ground reduce from 4.34% to 2.11%

What's next?

How to calculate more accurately for ions with Complex Electronic Structure?

- Lamb shift
- Fine/ Hyperfine structure splitting
- Bound electron g-factor

Fine structure of B-like ions

Data on Landé factors and level compositions are not available for this ion in ASD

Primary data source Martin et al. 1990		Query NIST Bibliographic Database for S XII (new window) Literature on S XII Energy Levels			
Configuration	Term	J	Level (eV)	Uncertainty (eV)	Reference
2 <i>s</i> ² 2 <i>p</i>	²₽°	1 _{/2} 3 _{/2}	0. 00000 1. 62857		L7237
2 <i>s</i> 2 <i>p</i> ²	⁴ P	1 _{/2} 3 _{/2} 5 _{/2}	24. 0383+x 24. 6326+x 25. 4695+x		

M1 transition for Boron-like ions:

- Astrophysical plasma diagnostics;
- Test quantum electrodynamic (QED);
- Candidate transitions for HCI optical clock;

Collaborated with W.Q. Weng from IMP, Lanzhou

B-like Ions: Test QED

Volume 91, Number 18	PHYSICAL REVIEW LETTERS	week ending 31 OCTOBER 2003		
High Precision Wavelength Measurements of QED-Sensitive Forbidden Transitions in Highly Charged Argon Ions				
I. Draganić, ^{1,*} J. R. Crespo Lój	pez-Urrutia, ¹ R. DuBois, ² S. Fritzsche, ³ V. M. Shabaev, ⁴ R. So Y. Zou, ⁵ and J. Ullrich ¹	oria Orts, ¹ I. I. Tupitsyn, ^{1,4}		
¹ Max-Planck ² University	Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, of Missouri-Rolla, Physics Building, Rolla, Missouri 65409-0640	Germany 0, USA		
PRL 98, 173004 (2007)	PHYSICAL REVIEW LETTERS	week ending 27 APRIL 2007		
QED Calculation of the $2p_{3/2} - 2p_{1/2}$ Transition Energy in Boronlike Argon				
A. N. Artemye	v, ^{1,2} V. M. Shabaev, ^{1,2} I. I. Tupitsyn, ^{1,2} G. Plunien, ² and V. A.	Yerokhin ³		
¹ Department of Physics, St. ² Institut für Theo ³ Center for Advanced Studies, St.	Petersburg State University, Oulianovskaya 1, Petrodvorets, St. Pet oretische Physik, TU Dresden, Mommsenstraße 13, D-01062 Dresde Petersburg State Polytechnical University, Polytekhnicheskaya 29,	tersburg 198504, Russia en, Germany St. Petersburg 195251, Russia		
	(Received 20 February 2007; published 27 April 2007)			

Table: Experimental values and accuracy for ${}^{2}P_{3/2} \rightarrow {}^{2}P_{1/2}$ transition energy

Ions	Expt. Energy(eV)	Accuracy
S ¹¹⁺	1.6285(1)	7.61×10 ⁻⁵
Cl ¹²⁺	2.1583(25)	1.16×10 ⁻³
Ar ¹³⁺	2.8090279(6)	2.14×10 ⁻⁷
K ¹⁴⁺	3.5963(31)	8.62×10 ⁻⁴
Ca ¹⁵⁺	4.5397(37)	8.15×10 ⁻⁴
Sc ¹⁶⁺	5.6583(4)	7.07×10 ⁻⁵
Ti ¹⁷⁺	6.9732(4)	5.74×10 ⁻⁵
V ¹⁸⁺	8.5061(50)	5.88×10 ⁻⁴
Cr ¹⁹⁺	10.2815(17)	1.65×10 ⁻⁴
Mn^{20+}	12.3100(12)	9.75×10 ⁻⁵
Fe^{21+}	14.6640(35)	2.39×10 ⁻⁴
Ni ²³⁺	20.3286(68)	3.35×10 ⁻⁴
Cu ²⁴⁺	23.7154(93)	3.92×10 ⁻⁴

A. N. Artemyev et al., Phys. Rev. A 88, 032518 (2013)

Forbidden transition of B-like S¹¹⁺ and Cl¹²⁺

The experimental results

574.1539(26) nm

	S ¹¹⁺ (eV)		Cl ¹²⁺ (eV)	
	Core-Hartree	Kohn-Sham	Core-Hartree	Kohn-Sham
Dirac	1.76301	1.79581	2.32760	2.36827
Correlation,1	-0.08043	-0.11281	-0.10034	-0.14069
Correlation,2	-0.11063	-0.08568	-0.14108	-0.10825
Correlation,3	+0.0538(2)	0.0285(2)	+0.0687(2)	0.0356(2)
QED,1	0.00340	0.00343	0.00441	0.00448
QED,2	-0.0003(3)	-0.0003(3)	-0.0003(3)	-0.0004(3)
Recoil	-0.00009	-0.00009	-0.00008	-0.00008
Total	1.6289(4)	1.6289(4)	2.1589(4)	2.1589(4)
Final	1.6289(4)		2.158	39(4)
Expt.(This work)	1.628857(6)		2.1588	26(10)
Expt.(prev.)	1.6285(1)		2.158	3(25)

Theoretical calculation results

Forbidden transition of B-like S¹¹⁺ and Cl¹²⁺

Increased by~20 times

Increased by~200 times

Comparison of experimental and theoretical results of isoelectronic sequence boronlike ions

B. Edlén, Phys. Scr. 28, 483 (1983); I. Draganić et al, Phys. Rev. Lett. 91, 183001 (2003); A. N. Artemyev et al., Phys. Rev. A 88, 032518 (2013).

Hyperfine of B-like Ions

Extended Data Table 1 | Measured frequency ratios and absolute frequencies

Measurement	Value	Relative uncertainty
<i>R</i> (⁴⁰ Ar ¹³⁺)	1.057 769 387 587 480 94(11)	$1.0 imes 10^{-16}$
ν (⁴⁰ Ar ¹³⁺)	679 216 462 397 957.43(11) Hz	$1.5 imes 10^{-16}$
<i>R</i> (³⁶ Ar ¹³⁺)	1.057 766 462 735 187 48(13)	$1.2 imes 10^{-16}$
ν (³⁶ Ar ¹³⁺)	679 214 584 287 424.91(12) Hz	1.7×10^{-16}
$ u(^{40}{ m Ar}^{13+})$ - $ u(^{36}{ m Ar}^{13+})$	1 878 110 532.51(11) Hz	$5.7 imes 10^{-11}$

Optical frequency ratios $R({}^{X}Ar^{13+}) = v({}^{X}Ar^{13+})/v({}^{171}Yb^+ E3)$, derived transition frequencies $v({}^{X}Ar^{13+})$, resulting isotope shift $v({}^{40}Ar^{13+}) - v({}^{36}Ar^{13+})$ and total relative uncertainties of each of the measurements are given.

Nature 611, 43-47 (2022)

the Fine Structure Splitting of : 2p⁵

Electron Correlation Breit Interaction QED: Self Energy(SE)+Vacuum Polarization(VP)

Inspired by R.Hutton, Collaborated with N.Nakamura & A.Volotka

S⁷⁺ and Cl⁸⁺ $2p^5$: ${}^{2}P_{1/2} - {}^{2}P_{3/2}$

S⁷⁺: λ=991.532 ±0.020 nm @Cobit

Cl⁸⁺: λ=732.757 ±0.017 nm@SH-HtscEBIT

Q. Lu, et al. PRA 102, 042817(2020)

the Fine Structure Splitting of : 2p⁵

the Fine Structure Splitting of : 3d⁹

Z=41, 428 nm Z=74, 18.567(3) nm

Summary

Provide data for fusion

Calculate more accurately

• Background

Open 4f electrons

- Tungsten Spectroscopy
- Chlorine& Sulfur Spectroscopy
- Summary

<mark>B-like ions</mark>

Fine structure/2p5

<mark>QED Test</mark>

Thanks for your attention! C. Y. Chen, R.Si, K. Wang R. Hutton, Y. Yang, K. Yao, B. Tu, B. Wei, Y. Zou... J.G. Li $W \cdot Q \cdot Wen$ 學大 Q /A N· Nakamura **İTMO** A. Volotka D. Glazov C. Y. Zhang Strathclyde Glasgow Y. Kozhedub T. Brage UNDS