

# Modeling for spectroscopic diagnostics of CCP-ICP and PBIF plasmas in KAERI

#### **Duck-Hee Kwon, Changmin Shin, Haewon Shin**

#### and Kil-Byoung Chai

#### 2023. 7. 12



Korea Atomic Energy Research Institute

Nuclear Data Center Nuclear Physics Application Research Division

<u>E-mail: hkwon@kaeri.re.kr, kbchai@kaeri.re.kr</u> <u>https://pearl.kaeri.re.kr</u>





- Modeling methods and AM data
- Sensitivities to used AM data and plasma parameters
- S/XB ratio for sputtering yield of W
  - S/XB ratio methods and atomic data
  - Experimental S/XB ratios





- Modeling methods and AM data
- Sensitivities to used AM data and plasma parameters

#### • S/XB ratio for sputtering yield of W

- S/XB ratio methods and atomic data
- Experimental S/XB ratios

# **OES in low temperature plasmas**

#### **Experimental setup**





CCP: Capacitively Coupled Plasma ICP: Inductively Coupled Plasms





# **CRM for low temperature He I plasma**

#### Steady state balance equation for excited levels

From the particle balance equation  $\frac{\partial n}{\partial t} + \nabla \cdot (n\mathbf{u}) = \frac{\delta n}{\delta t}$ ,  $n\mathbf{u} = -\nabla (D_a n)$  $\frac{\partial N_i}{\partial t} - \nabla \cdot (\nabla D_a N_i) = \left(\frac{\delta N_i}{\delta t}\right)_{CR}$ ,  $\nabla \cdot (\nabla D_a N_i) \approx \nu_i^d N_i$ ,  $\frac{\partial N_i}{\partial t} = 0$ 

In the weakly ionizing plasma conditions  $N_0 \alpha_I \gg n_+ \alpha_R$ ,  $n_+ \approx n_e$ 

# Populating termsDepopulating terms $\sum_{j \neq i} n_e \alpha_{ji}^{ex} N_j + \sum_{j > i} \eta_{ji}(N_i) A_{ji} N_j = \sum_{j \neq i} n_e \alpha_{ij}^{ex} N_i + \sum_{j < i} \eta_{ij}(N_j) A_{ij} N_i + n_e \alpha_i^{I} N_i + \sum_j \alpha_{ij}^{I} N_i N_j + \nu_i^d N_i$

#### **Nonlinear terms**

**Ground level population** 

$$p_{tot} = N_0 k_B T_g + n_+ k_B T_i + n_e k_B T_e \approx N_0 k_B T_g$$
$$N_0 \cong \frac{p_{tot}}{k_B T_g} (constant)$$

#### **Diagnostics for plasma parameters**

**Minimization of** 
$$\Delta(n_e, T_{eff}, R_{eff}, L_{eff}) = \sum \left(\frac{I_{ik}^{\text{CRM}} - I_{ik}^{\text{OES}}}{I_{ik}^{\text{OES}}}\right)^2, \qquad I_{ik}^{\text{CRM}} = \frac{N_i \eta_{ik} A_{ik}}{\lambda_{ik}}$$



# **Energy levels and Kinetic processes of He I**

#### **Energy levels**

#### **Kinetic processes**



1. He + e 
$$\rightarrow$$
 He<sup>\*</sup> + e  $\alpha_{ij}^{ex}$  [1]  
2. He + e  $\rightarrow$  He<sup>+</sup> + 2e  $\alpha_{i}^{I}$  [1]  
3. He<sup>\*</sup>  $\rightarrow$  He + hv  $\lambda_{ij}, A_{ij}$  [2]  
4. He(1s2 $\ell$ ) + He(1s2 $\ell'$ )  $\alpha_{ij}^{I}$   
 $\rightarrow$  He<sup>+</sup> + He + e  $\alpha_{ij}^{I}$   
2.9 × 10<sup>-9</sup>  $(T_g/300)^{1/2} (cm^3/s)$   
5. He(1s2s)  $\rightarrow$  to wall  $\nu_{i}^{d}$   
 $\nu_{i}^{d} = D_a \left( \left( \frac{2.405}{R_{eff}} \right)^2 + \left( \frac{\pi}{L_{eff}} \right)^2 \right),$   
 $D_a = 8.992 \times 10^{-2} \frac{T_g^{3/2}}{p} (cm^3/s)$ 

[1] Y. Ralchenko, R. K. Janev, T. Kato, D. V.
Fursa, I. Bray, F. J. de Heer, Atomic Data and Nuclear Data Tables 94 (2008) 603.
[2] G.W.F Drake, D.C. Morton, Astrophys. J.
Suppl. Series 170 (2007) 251.



K.-B. Chai and D.-H. Kwon, Spectrochimica Acta Part B 183 106269 (2021).

## **Population kinetics for He I**



#### **Deviation from Boltzman distributions**



# **KAERI Plasma Beam Irradiation Facility**

#### Motivation of the construction

In order to develop divertor materials and cooling techniques resisting high heat and particle fluxes (heat flux of 10 MW/m<sup>2</sup> and particle flux of 10<sup>24</sup> /m<sup>2</sup>s will come in ITER and much larger heat and particle fluxes will come in DEMO), we have constructed labscale divertor plasma simulator

#### Applied field-magnetoplasmadynamic (AF-MPD) External B-field coil thruster concept



#### type I/ type II

type I/ type II

- Anode radius = 4/2 cm, cathode radius = 0.6/0.4 cm
- Anode material: Cu, cathode material:  $W+ThO_2$  (2%)
  - Insulating material : ceramic  $(Al_2O_3)$
- Sustain power supply : DC 10-20 kW
- External B-field: 0.17 T (NdFeB permanent magnet)
- Both anode & cathode can be water-cooled

# **KPBIF schemes and measurement**



K.-B. Chai, D.-H. Kwon and M. Lee, Plasma Phys. Control. Fusion 63 125020 (2021)

## **CRM for H/D plasma**

#### Considered processes

- $\mathrm{H}(n \ge 1) + e \leftrightarrow \mathrm{H}(n' > n) + e$
- $H(n \ge 1) + e \leftrightarrow H^+ + 2e$
- $\mathrm{H}(n \leq 40) \to \mathrm{H}(n' < n) + h\nu$
- $\mathrm{H}^+ + e \rightarrow \mathrm{H}(n \leq 40) + h\nu$
- $\mathrm{H}_2 + e \to \mathrm{H}(n = 1) + \mathrm{H}(n' \le 3) + e$
- $H_2 + e \rightarrow 2H(n = 2) + e$
- $\mathrm{H}_2 + e \to \mathrm{H}^+ + \mathrm{H}(n = 1) + e$
- $\mathrm{H}_2 + e \to \mathrm{H}_2^+ + 2e$
- $H_2^+ + e \to H(n = 1) + H(n' \ge 2)$
- $\mathrm{H}_{2}^{+} + \mathrm{e} \rightarrow \mathrm{H}^{+} + \mathrm{H}(n \leq 2) + e$
- $\mathrm{H}_{2}^{+} + \mathrm{e} \rightarrow 2\mathrm{H}^{+} + e$
- $\mathrm{H}_{2}^{+} + \mathrm{e} \rightarrow \mathrm{H}_{2}^{*} \rightarrow \mathrm{H}(n = 1) + \mathrm{H}(n' \ge 2)$
- $\mathrm{H}_{3}^{+} + \mathrm{e} \rightarrow 3\mathrm{H}(n = 1)$
- $H_3^+ + e \to H_2 + H(n = 2)$  (14) [3]
- $H_3^+ + e \to H^+ + 2H(n = 1) + e$  (15) [3]
- $H_2^+ + H_2 \to H(n = 1) + H_3^+$  (16) [4]

- (1) [1] [1] R. K. Janev, D. Reiter and U Samm, Collision
   (2) [1] processes in low-temperature hydrogen plasmas, Report JUEL-4105 (2003).
- (3) [1] [2] R. K Janev et al., Elementary processes in
- (4) [1] Hydrogen-Helium plasmas, (Berlin: Springer 1987)
- (5) [2] [3] W. L. Wiese, and J. R. Fuhr, Accurate atomic
  (6) [2] transition probabilities for H, He, Li, J. Phys.. Chem. Ref. Data 38 565 (2009).
- (7) [1]
  [4] P. del Mazo-Sevillano, ..., D.-H. Kwon, O. Roncero,
  (8) [1] Molecular physics e2183071
- (9) [3] 
  The cross sections for electron collisions and radiative transitions of D species were used by those of H species. The heavy particle collision cross section of D species was from the ab-initio
  (12) [1] calculation for D [4]. The mass effect for rate coefficients and mobility of D were taken into account.

$$\begin{aligned} \alpha(T_{12}) &= \frac{4}{\sqrt{\pi}v_{T_{12}}^3} \int_0^\infty \sigma(v_{12}) exp\left(\left(v_{12}/v_{T_{12}}\right)^2\right) v_{12}^3 dv_{12} \\ T_{12} &= (m_2 T_1 + m_1 T_2)/(m_1 + m_2) \\ v_{T_{12}} &= \sqrt{2(m_1 + m_2)T_{12}/m_1 m_2} \end{aligned}$$

### **CRM for H/D plasma**

For atomic levels  $n_i$  (i = 1 - 40)

$$\begin{split} D_{AH^{+}} &= T_{e}K_{1}^{0}\left(\frac{760}{p}\frac{T_{m}}{273}\right) \\ p &= n_{H_{2}}T_{m} \\ K_{1}^{0} &= 15.9 \ (H^{+}), 11.2 \ (D^{+}) \\ (cm^{2}V^{-1}s^{-1}) \end{split} \\ \\ D_{AH^{+}} &: D_{AH_{2}^{+}} : D_{AH_{3}^{+}} &= 1:\frac{\sqrt{2}}{\sqrt{3}}:\frac{\sqrt{5}}{3} \end{split} \\ \end{split}$$

For molecule and ions  $n_i$  (*i*=41,42,43 for H<sub>2</sub>, H<sub>2</sub><sup>+</sup>, H<sub>3</sub><sup>+</sup>)

$$\begin{aligned} \frac{dn_i}{dt} &= \delta_{i41} \left( n_e \beta_{14} n_{43} + \frac{Q_{in}}{V} \times 4.48 \times 10^{17} + \frac{\gamma'}{\tau} n_1 + \sum_{j=42}^{43} \varsigma_{mj} \left(\frac{\mu}{R}\right)^2 D_{Aj} n_j + \varsigma_{mH^+} \left(\frac{\mu}{R}\right)^2 D_{AH^+} n_{H^+} \right) \\ &- \delta_{i41} n_e (\beta_5 + \beta_6 + \beta_7 + \beta_8) n_i - \delta_{i42} n_e (\beta_9 + \beta_{10} + \beta_{11} + \beta_{12}) n_i - \\ &\delta_{i43} n_e (\beta_{13} + \beta_{14} + \beta_{15}) n_i + \delta_{i42} (n_e \beta_8 - n_{41} \beta_{16}) n_i + \\ &n_{41} \beta_{16} \delta_{i43} n_{42} - \delta_{i41} \beta_{16} n_{42} n_i - \frac{Q}{V} n_i - (1 - \delta_{i41}) \left(\frac{\mu}{R}\right)^2 D_{Ai} n_i \end{aligned}$$

**Quasi neutrality condition** for H<sup>+</sup> ion  $n_{H^+}$ :  $n_e = n_{H^+} + n_{H_2^+} + n_{H_3^+}$ rather than **pressure balance equation** :

$$p_{tot} = n_m k_B T_m + k_B T_a \left( \sum_{j=1}^{40} n_j + n_{\mathrm{H}^+} \right) + n_e k_B T_e + n_m k_B \left( n_{\mathrm{H}_2^+} + n_{\mathrm{H}_3^+} \right)$$

## **Results for H/D CRM**



### Sensitivity to used atomic data $(X_2 + X_2^+, X = H, D)$



Recent data for

$$H_2(v = 0, j = 0) + H_2^+(v', j' = 0)$$
  
 $\rightarrow H_3^+ + H$ 

reactive cross sections obtained with QCT (quasi-classical trajectory) calculations

P. del Mazo-Sevillano, ..., D.-H. Kwon, O. Roncero, "Vibrational, non-adiabatic and isotopic effects in the dynamics of the  $H_2 + H_2^+ \rightarrow H_3^+ + H$ reaction: application to plasma modeling", Molecular physics e2183071 (2023)

(https://doi.org/10.1080/00268976.2023.2183071)



# **Resulting populations**





# H<sub>3</sub><sup>+</sup> dominant case

#### Sensitivity to used atomic data $(X_2 + e, X = H, D)$

 $X_2 + e \to X(n) + X(n') + e$ 

X = D

X = H



## H molecular energy levels







 $X_2 + e \to X_2^+ + 2e$ 



### **Resulting populations and spectra**



## Sensitivity to plasma parameters $n_e$ and $T_e$



## **CRM for vibrational states of H molecules**

Energy level diagram of H<sub>2</sub>

CRM for molecular spectra







- Collisional-radiative modeling (CRM) for He, H/D plasmas
  - Modeling methods and AM data
  - Sensitivities to used AM data and plasma parameters
- S/XB ratio for sputtering yield of W
  - S/XB ratio methods and atomic data
  - Experimental S/XB ratios

# S/XB ratio for sputtering yield

$$\Gamma = \int n_e S_{Z \to Z+1} N_Z dx = \int n_e \frac{S_{Z \to Z+1}}{n_i} \left(\frac{n_i}{N_Z} A_{ij}\right) N_Z dx$$

$$= \int \frac{\sum_{\sigma} n_{\sigma} S_{\sigma} / N_Z}{\sum_{\sigma} n_{\sigma} q_{\sigma i} / N_Z \cdot A_{ij} / \sum_{k < i} A_{ik}} n_i A_{ij} dx = \frac{S}{XB} I$$

$$S_{Z \to Z+1} N_Z = \sum_{\sigma} S_{\sigma} n_{\sigma}$$

$$n_i \sum_{k < i} A_{ik} = n_e \sum_{\sigma} n_{\sigma} q_{\sigma i}$$

$$N_Z = \sum_{\sigma} n_{\sigma},$$

$$S_{XB} = \Gamma_{W^+} + \Gamma_W^{GL}$$

$$\Gamma_W^{Spt} \approx \Gamma_{W^+} = 4\pi \frac{S}{XB} I_{WI}$$

$$\frac{S}{XB} = \frac{\Gamma_W^{Spt}}{4\pi I_{WI}} = \frac{Y\Gamma_i}{4\pi I_{WI}}$$

#### Schematic diagram for optical diagnostic in KPBIF



## Sputtering yield of W by Ar ion beam



#### **Measured S/XB ratios**





# Calculated data

I. Beigman et al., "Tungsten spectroscopy for the measurement of W-fluxes from plasma facing components", **Plasma Physics** and Controlled Fusion 49 1833 (2007)

#### Calculations of S/XB by I. Beigman et al. (2007)

#### **Electron impact ionization (EII) rate**

$$\langle v \sigma_{iz} \rangle = 10^{-8} A \frac{\sqrt{\beta}(\beta + 1 + D)}{(\beta + \chi)(\beta + 1)\sqrt{\beta_{iz} + 1}} e^{-\beta_{iz}} (\text{cm}^3 \text{s}^{-1})$$

 $\beta = Ry/T_e, \ \beta_{iz} = E_{iz}/T_e, \ E_{iz} = 7.9 \text{ eV}, \qquad A = 84.9, \chi = 0.22, D = -0.4$ 

for the 6s and 5d shells by Born-Ochkur approximation using ATOM

#### **Electron impact excitation (EIE) rate**

$$\langle v \ \sigma_{k_0 k} \rangle = 0.11 \times 10^{-16} \frac{g_k}{g_{k_0}} A_{k k_0} \left( \frac{Ry}{\Delta E} \right)^3 u(T_e) e^{-\beta_{ex}} (\text{cm}^3 \text{s}^{-1})$$
$$u(T_e) = \beta^{0.5} \log \left( 2 + \frac{1}{1.78\beta_{ex}} \right), \ \beta = Ry/T_e, \ \beta_{ex} = \Delta E/T_e$$

for the dipole transitions by the semi-empirical van Regemorter formula (Astrophys. J. **136** 906 (1962))

#### The ionization per photon

$$\frac{S}{XB} = \langle v \sigma_{iz} \rangle / \sum_{k_0} N_{k_0} \langle v \sigma_{k_0 k} \rangle \cdot \sum_{k''} A_{kk''} / A_{kk'}$$

# **Selected lines for S/XB of W**



NIST: A. E. Kramida and T. Shirai , J. Phys. Chem. Ref. Data 35 423 (2006)
HFR: P. Quinet et al., J. Phys. B: At. Mol. Opt. Phys. 44 145005 (2011), DESIRE DB
GRASP: R. T. Smyth, C. P. Ballance et al., Phys. Rev. A 97 052705 (2018)
MCDFGME : Present calculation

# **Energy levels for S/XB of W I**

#### **Energies (eV)**

| Configuration                             | Term           | J | NIST   | HFR    | GRASP  | MCDFGME |
|-------------------------------------------|----------------|---|--------|--------|--------|---------|
| $5d^46s^2$                                | <sup>5</sup> D | 0 | 0      | 0      | 0      | 0       |
|                                           |                | 1 | 0.2071 | 0.2104 | 0.1273 | 0.1465  |
|                                           |                | 2 | 0.4123 | 0.4192 | 0.2927 | 0.3239  |
|                                           |                | 3 | 0.5988 | 0.5998 | 0.4729 | 0.5204  |
|                                           |                | 4 | 0.7711 | 0.7585 | 0.6631 | 0.6941  |
| 5d⁵6s                                     | <sup>7</sup> S | 3 | 0.3659 | 0.3587 | 0.4057 | 0.0751  |
| 5d⁴6s6p                                   | <sup>7</sup> F | 1 | 2.4877 | 2.4826 | 2.1842 | 2.1667  |
|                                           | <sup>7</sup> D | 1 | 2.6599 | 2.6581 | 2.4292 | 2.4960  |
| 5d <sup>5</sup> 6p (5d <sup>4</sup> 6s6p) | <sup>7</sup> P | 2 | 3.2521 | 3.2584 | 2.9697 | 2.9706  |

# **Configurations for energies W I**

|                                                         |                                 | Even parit                        |                                    |                                   |
|---------------------------------------------------------|---------------------------------|-----------------------------------|------------------------------------|-----------------------------------|
| NIST, HF<br>based on<br>EXP<br>(Kramida<br>et al. 2006) | HFR<br>(Wyart<br>2010)          | HFR<br>(Quinet<br>et al.<br>2011) | GRASP<br>(Smyth<br>et al.<br>2018) | MCDFGME<br>(Present)              |
| $5d^46s^2$                                              | 5d <sup>4</sup> 6s <sup>2</sup> | 5d <sup>4</sup> 6s <sup>2</sup>   | $5d^46s^2$                         | $5d^46s^2$                        |
| 5d <sup>5</sup> 6s                                      | 5d⁵6s                           | 5d⁵6s                             | 5d⁵6s                              | 5d⁵6s                             |
| 5d <sup>6</sup>                                         | 5d <sup>6</sup>                 | 5d <sup>6</sup>                   | 5d <sup>6</sup>                    | 5d <sup>6</sup>                   |
| 5d <sup>4</sup> 6p <sup>2</sup>                         |                                 | 5d <sup>4</sup> 6p <sup>2</sup>   | 5d <sup>4</sup> 6p <sup>2</sup>    | 5d <sup>4</sup> 6p <sup>2</sup>   |
|                                                         |                                 | 5d <sup>4</sup> 6d <sup>2</sup>   | $5d^46d^2$                         | $5d^46d^2$                        |
| 5d <sup>3</sup> 6s6p <sup>2</sup>                       |                                 | 5d <sup>3</sup> 6s6p <sup>2</sup> | 5d <sup>3</sup> 6s6p <sup>2</sup>  | 5d <sup>3</sup> 6s6p <sup>2</sup> |
|                                                         |                                 |                                   |                                    | 5d <sup>3</sup> 6s6d <sup>2</sup> |
|                                                         |                                 | $5d^26s^26p^2$                    | $5d^26s^26p^2$                     | $5d^26s^26p^2$                    |
|                                                         |                                 |                                   | $5d^26s^26d^2$                     | $5d^26s^26d^2$                    |
|                                                         |                                 |                                   | $5d^47s^2$                         | $5d^47s^2$                        |
| 5d⁴6s6d                                                 |                                 | 5d <sup>4</sup> 6s6d              | 5d⁴6s6d                            |                                   |
|                                                         |                                 | 5d⁵6d                             | 5d⁵6d                              |                                   |
| 5d <sup>4</sup> 6s7s                                    |                                 | 5d <sup>4</sup> 6s7s              | 5d <sup>4</sup> 6s7s               |                                   |
| 5d <sup>5</sup> 7s                                      |                                 | 5d <sup>5</sup> 7s                | 5d <sup>5</sup> 7s                 | 5d <sup>5</sup> 7s                |
| 5d <sup>5</sup> 8s                                      |                                 |                                   |                                    |                                   |
| 5d <sup>4</sup> 6s7d                                    |                                 |                                   |                                    |                                   |
|                                                         |                                 |                                   | 5d <sup>3</sup> 6s <sup>2</sup> 6d |                                   |
|                                                         |                                 |                                   | $5d^36d^3$                         |                                   |
|                                                         |                                 |                                   | $5d^36s^27s$                       |                                   |
|                                                         |                                 |                                   | $5d6s^26d^3$                       |                                   |
|                                                         |                                 |                                   | 5p <sup>4</sup> 5d <sup>8</sup>    |                                   |
|                                                         |                                 |                                   | $5p^45d^66s^2$                     |                                   |
|                                                         |                                 |                                   | 5p⁴5d <sup>7</sup> 6s              |                                   |

|                                                         |                        | Odd parity                         |                                    |                                    |
|---------------------------------------------------------|------------------------|------------------------------------|------------------------------------|------------------------------------|
| NIST, HF<br>based on<br>EXP<br>(Kramida<br>et al. 2006) | HFR<br>(Wyart<br>2010) | HFR<br>(Quinet<br>et al.<br>2011)  | GRASP<br>(Smyth<br>et al.<br>2018) | MCDFGME<br>(Present)               |
| 5d <sup>4</sup> 6s6p                                    | 5d <sup>4</sup> 6s6p   | 5d⁴6s6p                            | 5d <sup>4</sup> 6s6p               | 5d <sup>4</sup> 6s6p               |
| 5d <sup>5</sup> 6p                                      | 5d⁵6p                  | 5d⁵6p                              | 5d⁵6p                              | 5d⁵6p                              |
| 5d <sup>3</sup> 6s <sup>2</sup> 6p                      | $5d^36s^26p$           | 5d <sup>3</sup> 6s <sup>2</sup> 6p | 5d <sup>3</sup> 6s <sup>2</sup> 6p | 5d <sup>3</sup> 6s <sup>2</sup> 6p |
|                                                         |                        | 5d <sup>3</sup> 6p <sup>3</sup>    | 5d <sup>3</sup> 6p <sup>3</sup>    | 5d <sup>3</sup> 6p <sup>3</sup>    |
|                                                         |                        | 5d <sup>2</sup> 6s6p <sup>3</sup>  | $5d^26s6p^3$                       | 5d <sup>2</sup> 6s6p <sup>3</sup>  |
|                                                         |                        | 5d <sup>4</sup> 6s7p               |                                    |                                    |
|                                                         |                        | 5d <sup>5</sup> 7p                 |                                    |                                    |
|                                                         |                        | 5d <sup>4</sup> 6s5f               |                                    |                                    |
|                                                         |                        | 5d <sup>5</sup> 5f                 |                                    |                                    |
|                                                         |                        |                                    | 5d <sup>3</sup> 6s <sup>2</sup> 7p |                                    |
|                                                         |                        |                                    | $5p^55d^7$                         |                                    |
|                                                         |                        |                                    | 5p⁵5d <sup>6</sup> 6s              |                                    |

- Our present MCDFGME : Selfconsistent-field (SCF) radial wavefunctions in the configuration interaction (CI) procedure
   Others in Fixed radial
- Others : Fixed radial wavefunctions in the CI procedure, ( GRASP : Extended Average Level (EAL) method )

# S/XB for various DB's

$$N_{k_0} = \frac{(2J_{k_0} + 1)\exp(-\Delta E_{k_0}/T_W)}{\sum_k (2J_k + 1)\exp(-\Delta E_k/T_W)}$$

| Config.                 | 5d <sup>4</sup> 6s <sup>2</sup> |                             |                             |                             |                             | 5d⁵6s       |
|-------------------------|---------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-------------|
| Level                   | <sup>5</sup> D <sub>0</sub>     | <sup>5</sup> D <sub>1</sub> | <sup>5</sup> D <sub>2</sub> | <sup>5</sup> D <sub>3</sub> | <sup>5</sup> D <sub>4</sub> | $^{7}S_{3}$ |
| $N_{k0}$ , $T_w = 2eV$  | 0.04                            | 0.11                        | 0.16                        | 0.21                        | 0.25                        | 0.23        |
| $N_{k0}$ , $T_w$ =0.1eV | 0.60                            | 0.23                        | 0.05                        | 0.01                        | 0.00                        | 0.11        |



#### S/XB by EIE cross section from DARC calculation and a CRM



C. C. Kepler et al., Plasma Phys. Control. Fusion **64** 104008 (2022) C. J. Favreau, Ph. D thesis, Auburn Univ. (2019)

# Further effects to be considered

$$\frac{S}{XB} = \frac{\eta \Gamma_{W^+}}{4\pi I_{WI}} = \frac{\eta Y \Gamma_i}{4\pi I_{WI}} \times \left\{ 1 - \exp\left(-\frac{L}{\lambda_{mfp}}\right) \right\}, \ \eta < 1.0$$

Optical cascade from upper levels

Finally, more accurate collisional-radiative modeling considering other processes such as diffusion etc.

# **Other models for EII(E) cross sections**

# Binary Encounter Bethe (BEB) model for EII

(Y.-K. Kim and M. E. Rudd, Phys. Tev. A **50** 3954 1994)

$$\sigma_{\text{neut}} = \frac{4\pi a_0^2 N R^2}{B^2 [t + (u+1)/m]} \left[ \frac{\ln t}{2} \left( 1 - \frac{1}{t^2} \right) + 1 - \frac{1}{t} - \frac{\ln t}{t+1} \right]$$

N : The orbital occupation number B : The orbital binding energy, t = T/B for incident electron energy T u = U/B for the orbital kinetic energy U Constant m = 1 for K- and L-shell, m=n of other orbitals

BE scaled plane wave Born (PWB) cross section for EIE

(Y.-K. Kim, Phys. Rev. A **64** 032713 2001)  

$$\sigma_{\rm BE} = \frac{T}{T + B + E} \sigma_{\rm PWB} \quad E: \text{ The excitation energy}$$

# **Summary and outlook**

- Collisional-radiative modeling (CRM) for He, H/D plasma
- ✓ The CRM solves nonlinear steady state balance equations including processes such as radiation trapping and heavy particle collisions self-consistently for low temperature regime. Sensitivities of line spectra and particle densities to used AM data and plasma parameters are investigated.
- ✓ Charge exchanges such as  $H^+ + H_2 \rightarrow H + H_2^+$  etc. will be considered in the CRM for H.
- ✓ CRM for H taking into account for molecular vibrational states will be performed.

# **Summary and outlook**



- S/XB ratio for sputtering yield of W
- ✓ S/XB ratios for W I were spectroscopically measured in KPBIF and compared with model calculations using EII/EIE and radiative transition data.
- ✓ New atomic data by metastable resolved BEB cross section for EII and BE scaled PWB cross section for EIE combined with MCDF calculation will be used for the S/XB calculation.

# **Our group members**



# Acknowledgements

- Wonho Choe, Gas discharge physics lab., Korea Advanced Institute of Science and Technology, Daejeon, Rep. of Korea
- Octavio Roncero, Quantum molecular dynamics, Instituto de Física Fundamental, Madrid, Spain
- Dmitry Fursa, MCCC molecular data, Curtin Institute for Computation and Department of Physics, Astronomy and Medical Radiation Sciences, Curtin University, Australia