Evaluation of Uncertainties in Atomic Data on Spectral Lines and Transition Probabilities

Alexander Kramida

National Institute of Standards and Technology, Gaithersburg, MD, USA

Contents of this talk

1. Introduction: "data" vs "numbers"
2. Uncertainties in wavelength measurements
1) Concept of inhomogeneous measurements
2) New statistical toolbox
3. Uncertainties in calculated transition probabilities
1) Length vs velocity forms
2) Indicators of uncertainty
3) Gauge sensitivity
4) Uncertainties in computed lifetimes
4. Conclusions and outlook

Introduction: "data" vs "numbers"

Ratio of circumference to diameter:
$L / D=\pi, \quad \pi=3.1415 \ldots$ is a number

Uncertainty is intrinsic part of data and cannot be omitted

Measurement data for D :
1.9005 ± 0.0005
1.9001 ± 0.0005
1.9010 ± 0.0005
1.9008 ± 0.0005
1.9003 ± 0.0005

Mean: 1.90054 ± 0.00022 (inch)
\square $1.92^{\prime \prime}$
Fits! $\quad{ }^{\circ} \begin{gathered}1.90^{\prime \prime} \\ \text { Doesn't } \\ \text { fit! }\end{gathered}$

Uncertainties in wavelength measurements

Guides for evaluating and expressing uncertainty in measurements GUM (BIPM): NIST TN1297:
NIST TN1900: NUM:
httos://www.biom.org/en/committees/ic/icgm/publications
http://physics.nist.gov/TN1297
https://doi.org/10.6028/NIST.TN. 1000
https://uncertainty.nist.gov/

Despite the availability of guides, uncertainty of a weighted mean is still controversial

Uncertainty of weighted mean: example

Measurement 1: $G=6.67430(15)\left[\times 10-11 \mathrm{~m}^{3} /\left(\mathrm{kg} \mathrm{s}^{2}\right)\right]-$ CODATA2018 Measurement 2: $G=6.690(3)$ [...] - Undergraduate physics experiment

Weighted mean (standard statistics): $v_{\mathrm{wm}}=\sum v_{i} w_{i} / \sum w_{i}, \quad w_{i}=1 / u_{i}^{2}$ Uncertainty of wm:

$$
u_{\mathrm{wm}}=1 / \sqrt{\sum w_{i}}
$$

$G_{w m}=6.67434(15)[\ldots]-$ "biased" uncertainty?
Unbiased unc. of wm (https://en.wikipedia.org/wiki/Weighted arithmetic mean): $u_{\text {biased }}^{2}=\sum w_{i}\left(v_{i}-v_{\mathrm{wm}}\right)^{2} / V_{1} ; \quad u_{\text {unbiased }}=u_{\text {biased }} / \sqrt{1-V_{2} / V_{1}^{2}}$ $V_{1}=\sum w_{i} ; \quad V_{2}=\sum w_{i}^{2}$
$u_{\text {biased }}=0.00080$

$$
u_{\text {unbiased }}=0.01100 \quad[\ldots]
$$

Error: WRONG STATISTICAL MODEL The two measurements are inhomogeneous

Dark Uncertainties in Heterogeneous Measurements

Measurement 1: $G=6.67430(15)\left[\times 10-11 \mathrm{~m}^{3} /\left(\mathrm{kg} \mathrm{s}^{2}\right)\right]-$ CODATA2018 Measurement 2: $G=6.690(3)$ [...] - Undergraduate physics experiment

Weighted mean with dark unc.: $v_{\mathrm{wm}}=\sum v_{i} w_{i} / \sum w_{i}, \quad w_{i}=1 /\left(u_{i}^{2}+d_{i}^{2}\right)$ Uncertainty of wm:

$$
u_{\mathrm{wm}}=1 / \sqrt{\sum w_{i}}
$$

A. L. Rukhin, Metrologia 56, 035002 (2019): Clustered Maximum Likelihood Estimator (CMLE) Clustered Reduced Maximum Likelihood Estimator (CRMLE)
$d_{1}=0, d_{2}=0.016 \rightarrow G_{\mathrm{wm}}=6.67430(15)[\ldots]-$ Justice restored!

Wavelength measurements are inhomogeneous (different line profiles, blending, Stark shifts, ...)

Statistical Toolbox

Statistical Toolbox

Physics of the outlying measurement

Part of the profile that was ignored

Measured part of the profile

Statistics can help to spot and localize the problem, but physics must be used to solve it.

Spotting outliers in "observed-Ritz" differences

FTS lines of Zr I and Zr II, J.E. Lawler, J.R. Schmidt, E.A. Den Hartog, JQSRT 289, 108283 (2022)

$\sigma_{\text {obs }}, \mathrm{cm}^{-1}$	$N_{\text {spectra }}$	$E_{\text {low }}$	$E_{\text {upp }}$	$\Delta \sigma_{\text {obs-Ritz }}$	$D_{\text {MP }}$	$D_{\text {CMLE }}$
$14473.2603(15)$	4	11016.6440	25489.8995	0.0048	0.0051	0.0062
$14604.5628(15)$	4	10885.3362	25489.8995	-0.0005	0.0051	0.0000
$21303.8870(26)$	3	4186.0080	25489.8995	-0.0045	0.0051	0.0000
$25489.8915(25)$	2	0.0000	25489.8995	-0.0080	0.0051	0.0062

Treat as measured quantity with same uncertainties as $\sigma_{\text {obs }}$

Do not blindly add dark uncertainties to observed ones.
This does not eliminate physical errors and may accentuate them.

Uncertainties in calculated transition probabilities

Use line strength S as discriminating quantity.

A. Kramida, Fusion Sci. Technol. 63, 313 (2013); Atoms 2, 86 (2014)

Problem: line strength S is not always the best discriminating quantity to correlate with uncertainties

Comparison of length and velocity forms

C. Froese Fischer, Phys. Scr. T134, 014019 (2009)
J. Ekman, M.R. Godefroid, H. Hartman, Atoms 2, 215 (2014)

GRASP2018: C. Froese Fischer, G. Gaigalas, P. Jönsson, J. Bieroń, CPC 237, 184 (2019)

Uncertainty indicator
 $$
d T=\frac{\left|A_{l}-A_{v}\right|}{\max \left(A_{l}, A_{v}\right)}
$$

Caveats:

- dT is not uncertainty! Only an indicator that must be treated statistically. Too often, $A_{l} \approx A_{v}$ but both are wrong!
- Because of $\max ()$ in denominator, $d T$ always underestimates uncertainties. Better use min().

Better indicator of uncertainty

A. Kramida, Fusion Sci. Technol. 63, 313 (2013)
F. El-Sayed, JQSRT 254, 107204 (2020)

$$
d L=\ln \left(S_{1} / S_{2}\right)
$$

S_{1} and S_{2} are any two forms of line strength of the same transition. Uncertainty in S:

$$
u_{S} \approx e^{\langle d L\rangle}-1
$$

Caveat:

Neither $d T$ nor $d L$ are statistically justified: their statistical
distributions are not normal. $\left[\left(\frac{S_{1}}{S_{2}}\right)^{\frac{1}{3}}-1\right] /\left(\frac{1}{3}\right)$ may be better.
A. Kramida, Atoms 2, 86 (2014)

Dividing transitions into groups: Which parameter does not depend on energy?

Similar S?
Similar gA?
Similar $g f$?
Similar branching fraction? Similar cancellation factor?
A. Kramida, Fusion Sci. Technol. 63, 313 (2013)
M.C. Li, W. Li, P. Jönsson et al., ApJS 265, 26 (2023)
W. Li, A.M. Amarsi, A. Papoulia et al., MNRAS 502, 3780 (2021)
J.Q. Li, C.Y. Zhang, G. Del Zanna et al., ApJS 260, 50 (2022)

No clear example
I.P. Grant, J. Phys. B 7, 1458 (1974)

Magnetic transitions (L is multipolarity: 1 for dipole, 2 for quadrupole, etc.):

$$
S_{\alpha \beta}^{\mathrm{m}} \propto\left[\int_{0}^{\infty}\left(P_{\alpha} Q_{\beta}-Q_{\alpha} P_{\beta}\right) r^{L} \mathrm{~d} r\right]^{2}
$$

Electric transitions, Babushkin gauge:

$$
S_{\alpha \beta}^{\mathrm{e}}(B) \propto\left[\int_{0}^{\infty} R_{\alpha} R_{\beta} r^{L} \mathrm{~d} r\right]^{2}
$$

Electric transitions, Coulomb gauge:

$$
S_{\alpha \beta}^{\mathrm{e}}(C) \propto \frac{1}{\omega^{2}}\left[\int_{0}^{\infty} R_{\beta}\left\{\frac{\mathrm{d}}{\mathrm{~d} r}+\frac{\left(l_{\alpha}-l_{\beta}\right)\left(l_{\alpha}+l_{\beta}+1\right)}{2 r}\right\} R_{\alpha} \mathrm{d} r\right]^{2}
$$

Dividing transitions into groups

Which parameter does not depend on energy?

Example: resonance lines of H -like ions, $1 \mathrm{~s}-n \mathrm{p}_{3 / 2}, n=2-6$
O. Jitrik, C.F. Bunge, JPCRD 33, 1059 (2004)

$\max / \min =$
69
53

In vast majority of cases, S (length form for electric transitions) is empirically found to correlate best with uncertainties.
However, there are exceptions, so one must check if other quantities are better.

Dividing transitions into groups

Which parameter better correlates with uncertainties?

MCDHF calculation for N I: M.C. Li, W. Li, P. Jönsson et al., ApJS 265, 26 (2023)

$S_{\mathrm{C}} / \lambda^{2}$ is much better than S_{B} in this case, but $g A_{\mathrm{C}}$ is better yet.

Gauge dependence

Z. Rudzikas, Theoretical Atomic Spectroscopy (Cambridge Univ. Press, 2007) X.H. Zhang, G. Del Zanna, K. Wang et al., ApJS 257, 56 (2021)
P. Rynkun, S. Banerjee, G. Gaigalas et al., A\&A 658, A82 (2022)

$$
\begin{aligned}
& \quad S=a G^{2}+b G+c \\
& G=0 \quad-\text { Coulomb } \\
& G=\sqrt{(L+1) L}-\text { Babushkin } \\
& G_{S=0}=\frac{\sqrt{2}}{1-\left(M_{B} / M_{C}\right)} \\
& \left|G_{S=0}\right| \gg 1-\text { good accuracy }
\end{aligned}
$$

This methodology reflects a belief that $\left|1-M_{B} / M_{C}\right|$ is never random and always indicates a real accuracy of a calculation.

Gauge dependence

A. Hibbert, Galaxies 6, 77 (2018)

> "However, even though exact agreement between the two forms is achieved in a local potential approximation, the common value is not necessarily correct. It is sometimes possible to achieve good length and velocity agreement even in the HF approximation (a non-local potential method), but again the common value can be incorrect."

Methodology needed:

How to distinguish when closeness of S_{B} and S_{C} is a computational artifact, and when it reflects the real accuracy?

Cancellation factor

P. Rynkun et al., A\&A 658, A82 (2022)
 G. Gaigalas et al., ApJS 248, 13 (2020)

> Ce IV, $5 s^{2} 5 p^{6} 5 d^{2} D_{3 / 2}-$ $4 f 5 s^{2} 5 p^{6}{ }^{2} \mathrm{~F}_{5 / 2}^{\circ}$

Most transitions have the largest CF (better accuracy) for $G=1$ or $G=\sqrt{2}$.

The CF calculation should be included in the GRASP package.
M. Bilal et al., PRA 99, 062511 (2019):

For some transitions, velocity form gives more accurate results!

Dividing transitions into groups:

 Account for different amount of correlation effectsS. Rathi and L. Sharma, Atoms 10, 131 (2022)

GRASP calculations included virtual excitations to $n \leq 11$. Results are given for $n \leq 9$. Configurations with $n \leq 7$ include more correlations than those with $n=8$, 9 .

Transitions expected to have different accuracy must be considered separately.

Uncertainties in computed lifetimes: Comparisons with experiments

No database of critically evaluated lifetimes!

> Use the NIST Atomic Transition Probability Bibliographic Database:
> https://physics.nist.gov/fvalbib

Pay attention to experimental methods: not all are reliable.

Example: beam-foil results using ANDC (newer) are more accurate than ones with simple fitting of decay curves.

Uncertainties in computed lifetimes: Error propagation

Common error: comparison of $\tau_{\text {length }}$ and $\tau_{\text {velocity }}$

1) M1, M2, etc. are not accounted for.
2) Same problems as with $S_{\text {length }}$ and $S_{\text {velocity }}$.
3) Contributions from errors in wavelength to A-values must be accounted for.

Good practice examples:
M.C. Li et al., ApJS 265, 26 (2023) (N I); W. Li et al., A\&A 674, A54 (2023) (O I);
S. Rathi and L. Sharma, Atoms 10, 131 (2022) (Na-like Ar, Kr, Xe);
J. Ruczkowski, M. Elantkowska, IQSRT 277, 107996 (2022) (Sc II).

$$
\frac{u\left(\tau_{i}\right)}{\tau_{i}}=\tau_{i} \sqrt{\sum_{k} u\left(A_{i k}\right)^{2}}
$$

Uncertainties in computed lifetimes: Alternative method

N. Singh et al., JESRP 257, 147205 (2022) - W LXXIII and Au LXXVIII (He-like)

$$
\begin{aligned}
& \Delta \tau_{1}=\frac{\tau_{n=6}-\tau_{n=5}}{\tau_{n=5}} \\
& \Delta \tau_{2}=\frac{\tau_{n=7}-\tau_{n=6}}{\tau_{n=6}}
\end{aligned}
$$

Conclusions and outlook

New papers on atomic spectroscopy keep being published at a rate of 500 per year

Most EL papers are fragmentary. To make data useful, old works must be compiled, and their uncertainties evaluated.

Most TP papers are now theoretical, 90% do not have uncertainties. Such publications must be banned.

Progress in methods and new ideas are gratifying but insufficient. More effort is needed in methods of uncertainty evaluation.

