Evaluation of Uncertainties in Atomic Data on Spectral Lines and Transition Probabilities

Alexander Kramida

National Institute of Standards and Technology, Gaithersburg, MD, USA

National Institute of Standards and Technology U.S. Department of Commerce

Contents of this talk

- 1. Introduction: "data" vs "numbers"
- 2. Uncertainties in wavelength measurements
 - 1) Concept of inhomogeneous measurements
 - 2) New statistical toolbox
- 3. Uncertainties in calculated transition probabilities
 - 1) Length vs velocity forms
 - 2) Indicators of uncertainty
 - 3) Gauge sensitivity
 - 4) Uncertainties in computed lifetimes
- 4. Conclusions and outlook

National Institute of Standards and Technology U.S. Department of Commerce

Introduction: "data" vs "numbers"

Ratio of circumference to diameter: $L / D = \pi$, $\pi = 3.1415...$ is a *number*

Uncertainty is intrinsic part of data and cannot be omitted

Measurement *data* for *D*: 1.9005 ± 0.0005 1.9001 ± 0.0005 1.9010 ± 0.0005 1.9008 ± 0.0005 1.9003 ± 0.0005

D

National Institute of Standards and Technology U.S. Department of Commerce ASOS14, Paris, France, July 2023

Uncertainties in wavelength measurements

Guides for evaluating and expressing uncertainty in measurementsGUM (BIPM):https://www.bipm.org/en/committees/jc/jcgm/publicationsNIST TN1297:http://physics.nist.gov/TN1297NIST TN1900:https://doi.org/10.6028/NIST.TN.1900NUM:https://uncertainty.nist.gov/

Despite the availability of guides, uncertainty of a weighted mean is still controversial

National Institute of Standards and Technology U.S. Department of Commerce

Uncertainty of weighted mean: example

Measurement 1: $G = 6.67430(15) [\times 10-11 \text{ m}^3/(\text{kg s}^2)] - \text{CODATA2018}$ Measurement 2: G = 6.690(3) [...] - Undergraduate physics experiment

Weighted mean (standard statistics): $v_{wm} = \sum v_i w_i / \sum w_i$, $w_i = 1/u_i^2$ Uncertainty of wm: $u_{wm} = 1/\sqrt{\sum w_i}$

*G*_{wm} = 6.67434(15) [...] – "biased" uncertainty?

Unbiased unc. of wm (https://en.wikipedia.org/wiki/Weighted arithmetic mean): $u_{\text{biased}}^2 = \sum w_i (v_i - v_{\text{wm}})^2 / V_1; \quad u_{\text{unbiased}} = u_{\text{biased}} / \sqrt{1 - V_2 / V_1^2}$ $V_1 = \sum w_i; \quad V_2 = \sum w_i^2$

 $u_{\rm biased} = 0.00080$

$$u_{\text{unbiased}} = 0.01100$$
 [...]

Error: WRONG STATISTICAL MODEL

The two measurements are *inhomogeneous*

National Institute of Standards and Technology U.S. Department of Commerce ASOS14, Paris, France, July 2023

Dark Uncertainties in Heterogeneous Measurements

Measurement 1: $G = 6.67430(15) [\times 10-11 \text{ m}^3/(\text{kg s}^2)] - \text{CODATA2018}$ Measurement 2: G = 6.690(3) [...] - Undergraduate physics experiment

Weighted mean with dark unc.: $v_{wm} = \sum v_i w_i / \sum w_i$, $w_i = 1/(u_i^2 + d_i^2)$ Uncertainty of wm: $u_{wm} = 1/\sqrt{\sum w_i}$

> A. L. Rukhin, <u>Metrologia 56, 035002 (2019)</u>: Clustered Maximum Likelihood Estimator (CMLE) Clustered Reduced Maximum Likelihood Estimator (CRMLE)

 $d_1 = 0, d_2 = 0.016 \rightarrow G_{wm} = 6.67430(15) [...] - Justice restored!$

Wavelength measurements are *inhomogeneous* (different line profiles, blending, Stark shifts, ...)

National Institute of Standards and Technology U.S. Department of Commerce ASOS14, Paris, France, July 2023

Statistical Toolbox

4	AutoSave 🤇) - ୯		Statistical	toolbox.xlsm `	~	Q	Search (/	Alt+Q)						к	ramida, Alexander	(Fed) 🕘	m –		×
Fi	le Hor	ne Insert	Page Layout	Formul	as Data	Review	View	Developer	Help .	Acrobat								ç	□ Comments	🖻 Share	а
Pa	Cut Cut Cop Ste ✓ ダ For Clipboa	: py ~ mat Painter rd IS	Calibri B I U ∽ F	~ 11 ~	A A 3		کہ ∼ ≣ ≝ Ē	Wrap Text Merge & Center	~ \$	mber ~ % 9 Number	~ .00 →00 F3	Conditional Fo ormatting ~ 1 Sty	ormat as Cell Table ~ Styles /les	Insert	Delete Form Cells	nat ∑ Au	utoSum × A I × Z ear × Sort & Editing	Find & Select ~			^
R2	C4	• : ×	√ fx																		^
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	
1	Value	Uncertainty	Run	Dark Unc MP	Weighted mean MP	Unc(WM) MP	residual	reduced residual		Dark Unc CMLE	Weighted mean CMLE	Unc(WM) CMLE	residual	reduced residual		Dark Unc CRMLE	Weighted mean CRMLE	Unc(WM) CRMLE	residual	reduced residual	
2	4541700	1600	Kun	,				•													1
3 4	4536000 4541160	860																			
5	4541200	330																			
6 7	4542000 4541100	1100 1200																			
8	4540200	1200																			
9	4541100	4100																			
11	4540720	900																			
12	4541600	5700																			
13 14	4540250 4539840	620 820																			
15	4539260	470																			
16	4540700	1900																			
18																					
19																					
20																					
22																					
23																					
25													. 0			- 0					
26						Ex	peri	iment	al c:	lata	for C) VI 1	Ls(²S`)2s2	p(³P	°°)2P°	'، Jev	el.			
28									•	17	• •			, I I							
29						V.	I. A	zarov	, A.	Kra	mida	<i>,</i> Yu.	Kalc	neni	KO, 🦊						
30 31																					
32																					
33																					
Der		data 1	NP_plot (+)													m	m m _		+ 1000	
кеа	uy EO	ox Accessionity	anvestigate		_						_						ш			- 100%	14

National Institute of Standards and Technology U.S. Department of Commerce

ASOS14, Paris, France, July 2023

Statistical Toolbox

А	lutoSave 🧿	• 8) ~ (² · 🔻		Statistical_t	toolbox.xlsm 丶		Q	Search (Alt	t+Q)						ĸ	ramida, Alexander (Fed) 🤮	፹ -		×
Fil	le Hon	ne insert	Page Layou	t Formul	as Data	Review	View D	eveloper H	Help Ac	robat								Ę.	[]] Comments	🖻 Share	a
Pa	Cut	y ~ nat Painter	Calibri B I U ~	- 11 ⊡ - <u>♪</u>	A^ A [×] ≡	= <u>=</u> %	Alignment	Vrap Text Aerge & Center	~ \$ ~	ber % 9		Conditional For prmatting ~ Ta	rmat as Cell able ~ Styles	Insert	Delete Form	Tat Solution	utoSum ~ A Z ~ Il ~ Sort & lear ~ Filter ~	Find & Select ~			
R1	5010		J fr	1549 622406	70951																~
	5010		·	1343.022400	/0551																
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	F
1	Value	Jncertainty	Run	Dark Unc MP	Weighted mean MP	Unc(WM) MP	residual	reduced residual		Oark Unc CMLE	Weighted mean CMLE	Unc(WM) CMLE	residual	reduced residual		Dark Unc CRMLE	Weighted mean CRMLE	Unc(WM) CRMLE	residual	reduced residual	
2	4541700	1600	Kun	195	4540567	224	1133	0.70		0	4540879	228	821	0.51	L	0	4540880	228	820	0.51	
3	4536000	12000		195			-4567	-0.38		0			-4879	-0.41	L	0			-4880	-0.41	
5	4541100	330		195			633	1.65		0			321	0.97	7	0			320	0.55	
6	4542000	1100		195			1433	1.28		0			1121	1.02	2	0			1120	1.02	
7	4541100	1200		195			533	0.44		0			221	0.18	3	0			220	0.18	
8	4540200 4541100	1200 4100		195			-307	-0.30		0			-6/9	-0.57	, ;	0			-680	-0.57	
10	4537400	4100		195			-3167	-0.77		0			-3479	-0.85	, 5	0			-3480	-0.85	
11	4540720	900		195			153	0.17		0			-159	-0.18	3	0			-160	-0.18	
12	4541600	5700		195			1033	0.18		0			721	0.13	3	0			720	0.13	
13	4540250	820	_	195			-317 -727	-0.49		0	_		-629 -1039	-1.02	<u>,</u>	0	_		-030	-1.02	
15	4539260	470		195			-1307	-2.57	Ć	1550			-1619	-1.00) (1567			-1620	-0.99	
16	4540700	1900		195			133	0.07		O			-179	-0.09)				-180	-0.09	4
17				1	Normal pro	bability pl	ot for MP	residuals		I	Normal pro	bability plo	t for CML	E residual	s		Normal prob	ability plot	for CRMLE	residuals	s
19				2.00						1.50						1.50)				
20				1.50					•	1.00				•		1.00)			•	
21				1.00				•***		0.50				and the second second		0.50				and the second second	
22				0.00						0.50						0.50					
24				a ≩ -0.50						0.00 Ac		-				0.00					1
25				-1.00	•			y = 1.0219	9x - 0.0055	-0.50				y = 0.74	42x - 0.1454	-0.50)			y = 0.7433x -	
26				-1.50	and a second					-1.00		••				-1.00		•			
28				-2.00	\bigcap					-1.50						-1.50					
29				-3.00	\bigcirc					-2.00						-2.00	,				
30				-	2.00 -1.50	-1.00 -0.50	0.00 0.50	1.00 1.50	2.00		-2.00 -1.50	-1.00 -0.50	0.00 0.50	1.00 1.	50 2.00		-2.00 -1.50 -1	.00 -0.50	0.00 0.50	1.00 1.	1
32							G(U _i)						G(U _i)					0	i(U _i)		Ţ
	< >	data 🗈	VP_plot	Ð									: •							Þ	1
Rea	dy 🗐	Accessibility	: Investigate															I II -	-		%

National Institute of Standards and Technology U.S. Department of Commerce

Physics of the outlying measurement

Statistics can help to spot and localize the problem, but physics must be used to solve it.

National Institute of Standards and Technology U.S. Department of Commerce ASOS14, Paris, France, July 2023

Spotting outliers in "observed-Ritz" differences

FTS lines of Zr I and Zr II, J.E. Lawler, J.R. Schmidt, E.A. Den Hartog, JQSRT 289, 108283 (2022)

$\sigma_{ m obs}$, cm ⁻¹	N _{spectra}	E low	E _{upp}	$\Delta \sigma_{ m obs-Ritz}$	DU _{MP}	DU _{CMLE}
14473.2603 <mark>(15)</mark>	4	11016.6440	25489.8995	0.0048	0.0051	<mark>0.0062</mark>
14604.5628 <mark>(15)</mark>	4	10885.3362	25489.8995	-0.0005	0.0051	0.0000
21303.8870 <mark>(26)</mark>	3	4186.0080	25489.8995	-0.0045	0.0051	0.0000
25489.8915 <mark>(25)</mark>	2	0.0000	25489.8995	-0.0080	0.0051	<mark>0.0062</mark>

Treat as measured quantity with same uncertainties as $\sigma_{\rm obs}$

Do not blindly add dark uncertainties to observed ones. This does not eliminate physical errors and may accentuate them.

National Institute of Standards and Technology U.S. Department of Commerce

Uncertainties in calculated transition probabilities

Use line strength S as discriminating quantity.

A. Kramida, Fusion Sci. Technol. 63, 313 (2013); Atoms 2, 86 (2014)

Problem: line strength *S* is not always the best discriminating quantity to correlate with uncertainties

National Institute of Standards and Technology U.S. Department of Commerce

Comparison of length and velocity forms

C. Froese Fischer, Phys. Scr. T134, 014019 (2009)

J. Ekman, M.R. Godefroid, H. Hartman, Atoms 2, 215 (2014)

GRASP2018: C. Froese Fischer, G. Gaigalas, P. Jönsson, J. Bieroń, CPC 237, 184 (2019)

Uncertainty *indicator* $dT = \frac{|A_l - A_v|}{\max(A_l, A_v)}$

Caveats:

- *dT* is not uncertainty! Only an indicator that must be treated statistically. Too often, $A_l \approx A_v$ but both are wrong!
- Because of max() in denominator, *dT* always underestimates uncertainties. Better use min().

National Institute of Standards and Technology U.S. Department of Commerce

Better indicator of uncertainty

A. Kramida, <u>Fusion Sci. Technol. 63</u>, 313 (2013) F. El-Sayed, <u>JQSRT 254</u>, 107204 (2020)

 $dL = \ln(S_1/S_2)$

 S_1 and S_2 are any two forms of line strength of the same transition. Uncertainty in S:

 $u_S \approx e^{\langle dL \rangle} - 1$

Caveat:

Neither *dT* nor *dL* are statistically justified: their statistical distributions are not normal. $\left[\left(\frac{S_1}{S_2}\right)^{\frac{1}{3}} - 1\right] / \left(\frac{1}{3}\right)$ may be better.

A. Kramida, Atoms 2, 86 (2014)

National Institute of Standards and Technology U.S. Department of Commerce

Dividing transitions into groups: Which parameter does not depend on energy?

Similar S? Similar gA? Similar gf? Similar branching fraction? Similar cancellation factor? A. Kramida, <u>Fusion Sci. Technol. 63</u>, 313 (2013)
M.C. Li, W. Li, P. Jönsson et al., <u>ApJS 265</u>, 26 (2023)
W. Li, A.M. Amarsi, A. Papoulia et al., <u>MNRAS 502</u>, 3780 (2021)
J.Q. Li, C.Y. Zhang, G. Del Zanna et al., <u>ApJS 260</u>, 50 (2022) *No clear example*

I.P. Grant, <u>J. Phys. B 7, 1458 (1974)</u>

Magnetic transitions (L is multipolarity: 1 for dipole, 2 for quadrupole, etc.):

$$S^{\rm m}_{\alpha\beta} \propto \left[\int_0^\infty (P_\alpha Q_\beta - Q_\alpha P_\beta) r^L \,\mathrm{d}r\right]$$

Electric transitions, Babushkin gauge:

$$S^{\mathrm{e}}_{\alpha\beta}(B) \propto \left[\int_{0}^{\infty} R_{\alpha}R_{\beta}r^{L}\mathrm{d}r\right]^{2}$$

Electric transitions, Coulomb gauge:

$$S_{\alpha\beta}^{e}(C) \propto \frac{1}{\omega^{2}} \left[\int_{0}^{\infty} R_{\beta} \left\{ \frac{\mathrm{d}}{\mathrm{d}r} + \frac{(l_{\alpha} - l_{\beta})(l_{\alpha} + l_{\beta} + 1)}{2r} \right\} R_{\alpha} \mathrm{d}r \right]^{2}$$

National Institute of Standards and Technology U.S. Department of Commerce

Dividing transitions into groups Which parameter does not depend on energy?

Example: resonance lines of H-like ions, $1s-np_{3/2}$, n = 2-6 O. Jitrik, C.F. Bunge, JPCRD **33**, 1059 (2004)

In vast majority of cases, *S* (length form for electric transitions) is empirically found to correlate best with uncertainties.

However, there are exceptions, so one must check if other quantities are better.

National Institute of Standards and Technology U.S. Department of Commerce

Dividing transitions into groups Which parameter better correlates with uncertainties?

MCDHF calculation for NI: M.C. Li, W. Li, P. Jönsson et al., ApJS 265, 26 (2023)

 $S_{\rm C}/\lambda^2$ is much better than $S_{\rm B}$ in this case, but $gA_{\rm C}$ is better yet.

National Institute of Standards and Technology U.S. Department of Commerce

Gauge dependence

Z. Rudzikas, Theoretical Atomic Spectroscopy (Cambridge Univ. Press, 2007) X.H. Zhang, G. Del Zanna, K. Wang et al., <u>ApJS **257**</u>, <u>56 (2021)</u> P. Rynkun, S. Banerjee, G. Gaigalas et al., <u>A&A 658</u>, <u>A82 (2022)</u>

This methodology reflects a belief that $|1 - M_B/M_C|$ is never random and always indicates a real accuracy of a calculation.

National Institute of Standards and Technology U.S. Department of Commerce

Gauge dependence

A. Hibbert, Galaxies 6, 77 (2018)

"However, even though exact agreement between the two forms is achieved in a local potential approximation, the common value is not necessarily correct. It is sometimes possible to achieve good length and velocity agreement even in the HF approximation (a non-local potential method), but again the common value can be incorrect."

Methodology needed:

How to distinguish when closeness of S_B and S_C is a computational artifact, and when it reflects the real accuracy?

National Institute of Standards and Technology U.S. Department of Commerce

Cancellation factor

P. Rynkun et al., <u>A&A 658, A82 (2022)</u> G. Gaigalas et al., <u>ApJS 248, 13 (2020)</u>

Ce IV, 5s²5p⁶5d ²D_{3/2}– 4f5s²5p^{6 2}F°_{5/2}

Most transitions have the largest CF (better accuracy) for G = 1 or $G = \sqrt{2}$.

The CF calculation should be included in the <u>GRASP</u> package.

M. Bilal et al., <u>PRA 99, 062511 (2019)</u>: For some transitions, velocity form gives more accurate results!

National Institute of Standards and Technology U.S. Department of Commerce

Dividing transitions into groups: Account for different amount of correlation effects

S. Rathi and L. Sharma, Atoms 10, 131 (2022)

GRASP calculations included virtual excitations to $n \le 11$. Results are given for $n \le 9$. Configurations with $n \le 7$ include more correlations than those with n = 8, 9.

Transitions expected to have different accuracy must be considered separately.

National Institute of Standards and Technology U.S. Department of Commerce

Uncertainties in computed lifetimes: Comparisons with experiments

No database of critically evaluated lifetimes!

Use the NIST Atomic Transition Probability Bibliographic Database: <u>https://physics.nist.gov/fvalbib</u>

Pay attention to experimental methods: not all are reliable.

Example: beam-foil results using ANDC (newer) are more accurate than ones with simple fitting of decay curves.

National Institute of Standards and Technology U.S. Department of Commerce

Uncertainties in computed lifetimes: Error propagation

Common error: comparison of τ_{length} and τ_{velocity}

- 1) M1, M2, etc. are not accounted for.
- 2) Same problems as with S_{length} and S_{velocity} .
- 3) Contributions from errors in wavelength to A-values must be accounted for.

Good practice examples:

M.C. Li et al., <u>ApJS **265**</u>, <u>26</u> (2023) (N I); W. Li et al., <u>A&A **674**</u>, <u>A54 (2023)</u> (O I); S. Rathi and L. Sharma, <u>Atoms **10**, <u>131 (2022)</u> (Na-like Ar, Kr, Xe); J. Ruczkowski, M. Elantkowska, <u>JQSRT **277**, <u>107996 (2022)</u> (Sc II).</u></u>

$$\frac{u(\tau_i)}{\tau_i} = \tau_i \sqrt{\sum_k u(A_{ik})^2}$$

National Institute of Standards and Technology U.S. Department of Commerce

Uncertainties in computed lifetimes: Alternative method

N. Singh et al., JESRP 257, 147205 (2022) – W LXXIII and Au LXXVIII (He-like)

$$\Delta \tau_1 = \frac{\tau_{n=6} - \tau_{n=5}}{\tau_{n=5}}$$

$$\Delta \tau_2 = \frac{\tau_{n=7} - \tau_{n=6}}{\tau_{n=6}}$$

National Institute of Standards and Technology U.S. Department of Commerce

Conclusions and outlook

New papers on atomic spectroscopy keep being published at a rate of 500 per year

Progress in methods and new ideas are gratifying but insufficient. More effort is needed in methods of uncertainty evaluation.

National Institute of Standards and Technology U.S. Department of Commerce

