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XSTAR computes the physical conditions and emission 

spectra of a photoionized gas (Kallman+01, Bautista+01)
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X-ray astronomy comes of age in 1999 

Chandra Observatory
Instruments/detectors: High-
resolution images with CCDs. 
Transmission grating spectrometers 
(0.1 - 10 keV).
Mirror Description: 4 nested pairs 
with an area of 1145  cm2  and 0.5 
arc sec resolution. 

XMM-Newton Observatory
Instruments/detectors: CCD cameras and 
reflection grating spectrometers (0.1 - 12 
keV).
Mirror Description: 3 modules with 58 
mini-mirrors each giving a total area of 
4300 cm2 and 5 arc sec resolution.



XRISM will enable the study of X-ray objects with high-

resolution spectroscopy and high-throughput imaging 

Source: JAXA

Main scientific goals:
• Evolution of  the largest 

structures
• Matter in extreme gravitational 

fields
• Black-hole spin
• Internal structure of neutron stars
• Particle jets



XRISM soft X-ray spectrometer (SXS) is based 

on a micro-calorimeter

Source: ESA

Effective AreaResolving Power



XSTAR database contains targets and data structures to 

derive rates for ions with 1  Z  30 and 1  N  Z-2 

• Ground state photoionization 

• Bound–bound collision 

• Bound–bound radiative 

• Bound–free collision (level) 

• Total recombination 

• Bound–free radiative (level) 

• Total recombination forcing 

normalization 

• Two-photon decay 

• Charge exchange

• Element data

• Ion data 

• Level data

• Bound–bound radiative, 

superlevel to spectroscopic level 

• Collisional ionization total rate

• Bound–bound collisional, 

superlevel to spectroscopic level 

• Non-radiative Auger transition 

• Inner-shell photoabsorption 

followed by autoionization.



• H-like: Ly/Ly is a 

temperature 

diagnostic

• He-like: n=2→1 

triplet is a 

temperature and 

density diagnostic 

(Gabriel & Jordan 

69, Dubau+)

There are well-known plasma diagnostics 

based on X-ray line ratios

Hitomi spectrum of the Perseus Cluster fitted 
with XSTAR showing that the He-triplet 
becomes a quartet (Mendoza+22)



Ne-like: n=3→2 line ratios (15 -17 Å) in Fe XVII are used 

as density, temperature, and ionization-state diagnostics

Fe XVII n=2-3 level structure
Figure from Mendoza+17

Recent measurement solves the long-
standing problem of Fe XVII 3C/3D f-

value ratio (Kuhn+22)



A signature interaction of X-rays with ions gives rise to K 

absorption and emission lines (fluorescence)



A signature interaction of X-rays with ions gives rise 

to K absorption and emission lines (fluorescence)

K photoabsorption cross 
section of Ne-like Fe XVII

Radiation and Auger 
damping has been 
included in the R-matrix 
package through an 
optical potential 
following formalisms by 
Hickman-Robicheaux and 
Davies and Seaton 
(Gorczyca+99)



Accuracy of photoabsorption cross sections is vital 

in determining astrophysical inferences

Figure from Gatuzz+13

Chandra MEG  spectrum 
of XTE J1817-330



The accuracy of photoabsorption cross sections is vital 

in determining astrophysical inferences: e.g. O I K lines

Method Source E(1s - 2p, eV) E(1s -3p, eV) DE(eV)
Astronomical 
observations XMM-Newton, MrK 421 (Gorczyca+13) 527.30(5) 541.95(28) 14.65(33)

Chandra, 7 sources  (Gorczyca+13) 527.44(9) 541.72(18) 14.28(21)

Chandra, shifted  (Gorczyca+13) 527.26(9)

Chandra, 11 sources  (Liao+13) 527.39(2)

Chandra, 6 sources (Juett+04) 527.41(18) 541.77(40) 14.36(58)
Laboratory 
measurements HZB (Leutenegger+20) 527.26(4) 541.645(12)

14.39(5)

ALS (McLaughlin+13) 526.79(4) 541.19(4) 14.40(8)

ALS (Stolte+97) 526.79(4) 541.20(4) 14.41(8)

WSRC (Menzel+96) 527.85(10) 541.27(15) 13.41(25)

Auger spectroscopy (Caldwell+94) 527.20(30)

Calculation MCHF (Gorczyca+13) 527.49



Smearing of the Fe K edge by damping is distinctive 

in the opacities of a photoionized gas at  =10 

Figure from Palmeri+02

Damping included

No damping



Comparison of I(K/K) for Fe ions with 17  

N   23 can lead to charge-state diagnostics

Figures from Palmeri+02









Slide courtesy of Julia Lee







We have been including high-density 

effects (n_e > 15 cm-3) in XSTAR



Continuum lowering is treated with a Debye-Hückel potential

A universal formula was derived for the IP and K-edge shifts

Figure from Palmeri+22 
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DB maintenance and poor user interaction 

have been chronic problems 
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PyXstarDB and PyXstar are the new ventures

PyXstarDB (Kallman & Bautista): 

➢Open access to data producers and users (Jupyter notebooks)

➢Effective and error-free database updates (SQLite)

➢Automated updating from NIST and CHIANTI databases

➢Ease of manipulation, queries, and intercomparisons (Pandas DF)

➢Data preservation by avoiding the discard of outdated sets

➢Sustainability 

PyXstar (Kallman & Mendoza):

➢XSTAR modernization under object-orientated programming 

(Fortran18)

➢Wrap XSTAR Fortran modules as Python functions

➢Allow user access to under-the-hood data (atomic and plasma data 

manipulation with Pandas DF & Astropy Tables)

➢Comprehensive documentation and online user group
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