The XSTAR Atomic Database

Claudio Mendoza Physics Center, IVIC, Caracas

ASOS14 Sorbonne Université, Paris 13/07/23 XSTAR computes the physical conditions and emission spectra of a photoionized gas (Kallman+01, Bautista+01)

XSTAR atomic database team since 2001 (Mendoza+22)

- Manuel A. Bautista (WMU, NASA, USA)
- Jérôme Deprince (ULB, Belgium)
- Javier A. García (NASA-GSFC, USA)
- Efraín Gatuzz (MPI-EP, Germany)
- Thomas W. Gorczyca (WMU, USA)
- Timothy R. Kallman (NASA-GSFC, USA)
- Claudio Mendoza (IVIC, Venezuela)
- Patrick Palmeri (UMons, Belgium)
- Pascal Quinet (UMons, ULiegè, Belgium)
- Michael C. Witthoeft (NASA-GSFC, ADNET Sys.)

X-ray astronomy comes of age in 1999

Chandra Observatory Instruments/detectors: Highresolution images with CCDs. Transmission grating spectrometers (0.1 - 10 keV). Mirror Description: 4 nested pairs with an area of 1145 cm² and 0.5

arc sec resolution.

XMM-Newton Observatory Instruments/detectors: CCD cameras and reflection grating spectrometers (0.1 - 12 keV).

Mirror Description: 3 modules with 58 mini-mirrors each giving a total area of 4300 cm² and 5 arc sec resolution.

XRISM will enable the study of X-ray objects with highresolution spectroscopy and high-throughput imaging

Source: JAXA

Main scientific goals:

- Evolution of the largest structures
- Matter in extreme gravitational fields
- Black-hole spin
- Internal structure of neutron stars
- Particle jets

XRISM soft X-ray spectrometer (SXS) is based on a micro-calorimeter

Resolving Power

Effective Area

XSTAR database contains targets and data structures to derive rates for ions with 1 \leq Z \leq 30 and 1 \leq N \leq Z-2

- Ground state photoionization
- Bound–bound collision
- Bound–bound radiative
- Bound–free collision (level)
- Total recombination
- Bound–free radiative (level)
- Total recombination forcing normalization
- Two-photon decay
- Charge exchange

- Element data
- Ion data
- Level data
- Bound-bound radiative, superlevel to spectroscopic level
- Collisional ionization total rate
- Bound–bound collisional, superlevel to spectroscopic level
- Non-radiative Auger transition
- Inner-shell photoabsorption followed by autoionization.

There are well-known plasma diagnostics based on X-ray line ratios

with XSTAR showing that the He-triplet becomes a quartet (Mendoza+22)

Ne-like: $n=3\rightarrow 2$ line ratios (15 -17 Å) in Fe XVII are used as density, temperature, and ionization-state diagnostics

Fe XVII n=2-3 level structure Figure from Mendoza+17

Recent measurement solves the longstanding problem of Fe XVII 3C/3D fvalue ratio (Kuhn+22)

A signature interaction of X-rays with ions gives rise to K absorption and emission lines (fluorescence)

Illustrating these processes in the relatively simple case of Ne-like Fe $_{\rm XVII}$, the photoexcited K-vacancy states

$$h\nu + 1s^2 2s^2 2p^6 \longrightarrow 1s 2s^2 2p^6 np$$
 (1)

have access to the following decay tree:

$$1s2s^22p^6np \xrightarrow{Kn} 1s^22s^22p^6 + h\nu_n$$
 (2)

$$\xrightarrow{K\alpha} 1s^2 2s^2 2p^5 np + h\nu_\alpha \tag{3}$$

$$\begin{array}{ccc}
\stackrel{\text{KL}n}{\longrightarrow} & \begin{cases} 1s^2 2s^2 2p^5 + e^- \\ 1s^2 2s 2p^6 + e^- \\ \\
\stackrel{\text{KLL}}{\longrightarrow} & \begin{cases} 1s^2 2s^2 2p^4 np + e^- \\ 1s^2 2s 2p^5 np + e^- \\ 1s^2 2p^6 np + e^- \\ \end{cases} \tag{4}$$

A signature interaction of X-rays with ions gives rise to K absorption and emission lines (fluorescence)

K photoabsorption cross section of Ne-like Fe XVII

Radiation and Auger damping has been included in the *R*-matrix package through an optical potential following formalisms by Hickman-Robicheaux and Davies and Seaton (Gorczyca+99)

Accuracy of photoabsorption cross sections is vital in determining astrophysical inferences

The observed flux can be approximated as

$$F(E) = F_0 \exp\left[-N_{\rm O_I}\sigma_{\rm O_I}(E)\right]$$

where F_0 is a normalization factor, N_{O_I} is the oxygen column density, and $\sigma_{O_I}(E)$ is the photoabsorption cross section for neutral oxygen.

Chandra MEG spectrum of XTE J1817-330

Figure from Gatuzz+13

The accuracy of photoabsorption cross sections is vital in determining astrophysical inferences: e.g. O I K lines

Method	Source	E(1s - 2p, eV)	E(1s -3p, eV)	∆E(eV)
Astronomical				
observations	XMM-Newton, MrK 421 (Gorczyca+13)	527.30(5)	541.95(28)	14.65(33)
	Chandra, 7 sources (Gorczyca+13)	527.44(9)	541.72(18)	14.28(21)
	Chandra, shifted (Gorczyca+13)	527.26(9)		
	Chandra, 11 sources (Liao+13)	527.39(2)		
	Chandra, 6 sources (Juett+04)	527.41(18)	541.77(40)	14.36(58)
Laboratory				14.39(5)
measurements	HZB (Leutenegger+20)	527.26(4)	541.645(12)	
	ALS (McLaughlin+13)	<mark>526.79(4)</mark>	<mark>541.19(4)</mark>	14.40(8)
	ALS (Stolte+97)	<mark>526.79(4)</mark>	<mark>541.20(4)</mark>	14.41(8)
	WSRC (Menzel+96)	<mark>527.85(10)</mark>	<mark>541.27(15)</mark>	<mark>13.41(25)</mark>
	Auger spectroscopy (Caldwell+94)	527.20(30)		
Calculation	MCHF (Gorczyca+13)	527.49		

Smearing of the Fe K edge by damping is distinctive in the opacities of a photoionized gas at $\xi = 10$

Comparison of I(K β /K α) for Fe ions with 17 \leq N \leq 23 can lead to charge-state diagnostics

Fig. 1. Comparison of centroid wavelengths for **a**) K α and **b**) K β UTAs in Fe ions with $17 \le N \le 25$. Filled circles: this work. Filled triangles: Kaastra & Mewe (1993).

Fig. 2. Comparison of K β /K α intensity ratios for Fe ions with 18 $\leq N \leq 25$. Filled circles: HFR, this work. Dotted upright triangles: AUTOSTRUCTURE, this work. Dotted diamonds: MCDF-SAL, this work. Filled upright triangles: Kaastra & Mewe (1993). Filled squares: Jacobs & Rozsnyai (1986). Filled diamonds: Scofield (1974). Filled inverted triangles: Jankowski & Polasik (1989). Circles: Perujo et al. (1987). Upright triangles: Hölzer et al. (1997). Squares: Rao et al. (1986). Diamonds: Berényi et al. (1978). Inverted triangles: Salem et al. (1972). Dotted circles: Slivinsky & Ebert (1972). Dotted squares: Hansen et al. (1970).

Figures from Palmeri+02

X-ray Reflection from Accretion Disks

RELXILL: Relativistic X-ray Reflection

<u>RELXILL</u>: Relativistic reflection model that combines detailed reflection spectra from xillver (García & Kallman 2010), with the relline relativistic blurring code (Dauser et al. 2010).

X-ray Reflection from the Inner-Disk

The line profile of iron K-alpha from MCG-6-30-15 observed by the ASCA satellite (Tanaka et al. 1995)

Iron line Profiles near a Black Hole

REVIEWS :

Fabian et al. 2000 Reynolds^{sige} Nowaku 2003

Diagnostic Tool: Black Hole Spin

possible Spin values: $a = -1 \dots 1$

a = cJ/GM² (Dimensionless Spin Parameter)

The Problem of the Fe Abundance

Iron abundance determinations using reflection spectroscopy from publications since 2014 tend to find a few times the Solar value!

We have been including high-density effects (n_e > 15 cm-3) in XSTAR

- Continuum lowering (Debye-Hückel) J Deprince PhD thesis
- DR suppression based on expressions by Nikolić+13
- Three-body recombination determined from collisional ionization cross sections (Raymond & Smith 77, Bryans+06) or hydrogenic rates otherwise
- Stimulated radiative processes rates for recombination and decay enhanced by a factor $1 + \frac{F_e h^3 c^2}{2e^3}$
- Free-free heating cut-off power law

Continuum lowering is treated with a Debye-Hückel potential A universal formula was derived for the IP and K-edge shifts

Figure from Palmeri+22

DB maintenance and poor user interaction have been chronic problems

DB maintenance and poor user interaction have been chronic problems

PyXstarDB and PyXstar are the new ventures

PyXstarDB (Kallman & Bautista):

- Open access to data producers and users (Jupyter notebooks)
- Effective and error-free database updates (SQLite)
- Automated updating from NIST and CHIANTI databases
- Ease of manipulation, queries, and intercomparisons (Pandas DF)
- Data preservation by avoiding the discard of outdated sets
- ➤ Sustainability

PyXstar (Kallman & Mendoza):

- XSTAR modernization under object-orientated programming (Fortran18)
- Wrap XSTAR Fortran modules as Python functions
- Allow user access to under-the-hood data (atomic and plasma data manipulation with Pandas DF & Astropy Tables)
- Comprehensive documentation and online user group