FAIR Assessment of the VAMDC

infrastructure

ASOS 2023 - Paris 2023/07/13
https://tinyurl.com/asos2023

The Virtual Atomic and Molecular Data Centre in a nutshell

- E-infrastructure connecting about 40 heterogeneous databases that can be accessed from http://portal.vamdc.org/ or any VAMDC compatible tools
- Consortium of 25 partners
- High quality scientific data come from different Physical/Chemical Communities
- Provides a large dissemination platform to data producers

Paper « A decade with VAMDC : results and ambition, Atoms, 2020 » http://dx.doi.org/10.3390/atoms8040076

List of interconnected databases

Databases	Type of A\&M Data	Partners	Application's Fields
NIFS AMDIS IONIZATION	Electron-impact ionization cross-sections and rate coefficients (atoms \& atomic ions)	National Institute for Fusion Science, Toki, Japan, I. Murakami	Stellar, Solar, plasma, fusion
VALD	Atomic Linelists	Uppsalla, Vienna, Moscow - N. Piskunov	Stellar -Solar
NIST Atomic Spectra	Spectroscopy of Atoms -	NIST - Yuri Ralchenko	Stellar - ISM -
CHIANTI	Atomic Linelists and collisions	Cambridge (UK)+MSSL/UCL - H. Mason, G. Rixon	Solar Physics
Spectr-W3	Atomic Linelists and Collisions	Russia (RFNC VNIITF) - P. Loboda	Solar/Stellar Physics + Fusion, plasma
Stark-B	Atomic LineShifts/Broadening with charged perturbers	Observatory of Belgrade (Serbia) + Observatory of Paris (LERMA) - M. Dimitrijevic/S. Sahal-Bréchot	Stellar Physics + Plasmas
TipBase, TopBase	Atomic Linelists and Collisions from Opacity Project and IRON Project	Observatory of Paris (LERMA) + CDS (Strasbourg, Fce) - F. Delahaye/C. Zeippen/C. Mendoza	Stellar, Solar Physics,
SESAM	Electronic Spectra of atoms and molecules	Paris Obs. - E. Roueff	ISM - Stellar

List of interconnected databases

Databases	Type of A\&M Data	Partners	Application's Fields
MOLD	Photo-Dissociation Cross-sections	Institute of Physics, Astronomical Obs, Belgrade, Serbia- Vladimir Sreckovic, V. Vujcic, D. Jevremovic	Stellar
BEAM-DB	Molecular/atom-electron collisions	Institute of Physics, Belgrade, Serbia Bratislav Marinkovi\’c	plasma, radiation damage
IDEABD	Dissociative electron attachment upon interaction of low energy electrons with molecules.	Innsbrück F. Duensing	Planets, ExoPlanets, AMBDAS
Collisions in plasmas (bibliographic) - searchable via processes ans species	IAEA, Vienna, Austria -	C. Hill	Nuclear Fusion
AMamage			

List of interconnected databases

Databases	TYpe of A\&M Data	Partners	Application's Fields
CDMS	Molecular Linelists (mm, Sub-mm)	Cologne (Germany) - S. Schlemmer	ISM + Earth+ CO
JPL	Molecular Linelists (mm, Sub-mm)	Pasadena (USA) + Cologne (Germany) - B. Drouin	ISM + Earth+CO
HITRAN	Molecular Linelists and Broadening Coefficients	Harvard (USA) + UCL - I. Gordon + L. Rothman	Earth, Planets, Exo-Planets
S\&MPO	O_{3} linelists	Reims (France)+ Tomsk (Russia) - V. Tyuterev	Earth - Exo-Planets

List of interconnected databases

| Databases | Type of A\&M Data | Partners | Application's Fields |
| :--- | :--- | :--- | :--- | :--- |
| RuCaSDa | RuO_{4} Linelists | Dijon - V. Boudon | Nuclear Industry |
| TFSiCaSDa | SiF_{4} Linelists | Dijon - V. Boudon | Earth |
| UHeCaSDa | UF_{6} Linelists | Dijon - V. Boudon | Nuclear Industry |
| CDSD-296 | CO_{2} Linelists (intensity cut-off) | IAO, Tomsk - V. Perevalov | Earth, Planets, Brown Dwarfs |
| CDSD-1000 | CO_{2} Linelists (intensity cut-off) | IAO, Tomsk - V. Perevalov | Earth, Planets, Brown Dwarfs |
| CDSD-4000 | CO_{2} Linelists (intensity cut-off) | IAO, Tomsk - V. Perevalov | Earth, Planets, Brown Dwarfs |
| NOSD-1000 | $\mathrm{N}_{2} \mathrm{O}$ Linelists (intensity cut-off) | IAO, Tomsk - V. Perevalov | Earth, Planets |
| NDSD-1000 | NO_{2} Linelists (intensity cut-off) | IAO, Tomsk - V. Perevalov | Earth, Planets |
| ASD-1000 | $\mathrm{C}_{2} \mathrm{H}_{2}$ Linelists (intensity cut-off) | IAO, Tomsk - V. Perevalov | Earth, Planets |

List of interconnected databases

Databases	Type of A\&M Data	Partners	Application's Fields
PAH	PAH Theoretical Data and soon experimental Data	Observatory of Cagliari (Italy) - IRAP (Toulouse, France) - G. Mulas+C. Joblin	ISM, Planets, Earth
KIDA	Kinetic Data	 V. Wakelam	ISM - Planets
UdfA	Kinetic Data (ex-UMIST)	Belfast (UK) - T. Millar	ISM - Planets
BASECOL	Low Energy Molecular Collisions	Observatory of Paris - M.L. Dubernet	ISM - CO
LASP	Solid Spectroscopy Data	Obs. of Catania - G. Leto	Planets, ISM
GhoSST	Solid Spectroscopy Data	Grenoble (France) - B. Schmitt	Planets, ISM
W@DIS	Water Information System	IAO, Tomsk - A. Fazliev	Earth and Planets

To be connected to VAMDC infrastructure

Databases	Type of A\&M Data	Partners	Application's Fields
ExoMolOP	Molecular Opacities	University College London, UK - J. Tennyson	Exo, Brown Dwarf, Earth, Stellar
SSHADE	Solid Spectroscopy Data - Interface to infrastructure	Grenoble (France) \& other countries - B. Schmitt et al	Earth, Comets, Exo-Planets, ISM, Planets
IAMDB	Indian Atomic and Molecular Database (atomic collisions, A+M spectroscopy)	B. Antony- Indian Institute of Technology, Dhanbad, India E. Krishnakumar - Raman Research Institute, Bengalore, India	Astrophysics, Other
DESIRE	Spectroscopy of sixth row elements ($\mathrm{Z}=72-86$)	Mons University and Liege University, Belgium - P.Quinet, P. Palmeri	Plasmas - Stellar - Solar
DREAM	Radiative data for rare earth	Mons University and Liege University, Belgium - P Quinet, P. Palmeri	Stellar-Solar-Plasmas - Lighting -
PEARL	Atomic Processes	Nuclear data Center, KAERI, Daejon, South Korea Kwon Duck-Hee	Stellar-Solar-Plasmas - Fusion
Clusters	Cluster size distributions, condensation	Innsbrück F. Duensing, P. Scheier	Planets, ExoPlanets, Solvation, Biology
Additional NIFS Databases	Atomic/Molecular processes	National Institute for Fusion Science, Toki, Japan, I. Murakami	Stellar, Solar, plasma, fusion

Existing
A/M database

The infrastructure technical architecture

Accepts queries submitted in a standard grammar (subset of SQL)

Existing
A/M
database
VAMC node software
\rightarrow VAMDC Node

Generates outputs formatted into standard XML file (XSAMS)

The infrastructure technical architecture

https://standards.vamdc.eu

The infrastructure technical architecture

Accepts queries submitted in a standard grammar (subset of SQL)

https://standards.vamdc.eu

The infrastructure technical architecture

- consortium

Generates outputs formatted into standard XML file (XSAMS)

Accepts queries submitted in a standard grammar (subset of SQL)

A/M database

VAMC node software \rightarrow VAMDC Node

D.R. Schultz, ORNL; E. Roueff, ML Dubernet, N. Moreau :
Observatoire Paris; S.
Gagarin, P.A. Loboda, VNIITF

National Institute of Standards and Technology
U.S. Deparment of Commerce
Y.Ralchenko

IAEA International Atomic Energy Agency
R.E.H. Clark,
D. Humbert
B. Braams

The infrastructure technical architecture

VAMDC Node 1

The infrastructure technical architecture

VAMDC Node 1

Node N-1

Node N

The infrastructure technical architecture

VAMDC Node 1
Registries
https://registry.vamdc.org
Node N-1

The infrastructure technical architecture

The infrastructure technical architecture

The infrastructure technical architecture

VAMDC Node 1

Node N

Species Data-base
https://species.vamdc.org

Registries

https://registry.vamdc.org

Client software
(Portal, Spectcol, MyXclass, ...)

The infrastructure technical architecture

VAMDC Node 1

Node N-1

Registries

https://registry.vamdc.org

Node N

The infrastructure technical architecture

VAMDC Node 1

Node N-1

Node N

The infrastructure technical architecture

The infrastructure technical architecture

The infrastructure technical architecture

The infrastructure technical architecture

- consortium

5 - details about each served query feed the Query Store

Species Data-base
https://species.vamdc.org

Registries
https://registry.vamdc.org

A central repository for all the queries served by the infrastructure:

- DOI and PID for each query
- Original served query

Query Store
https://cite.vamdc.org

- Version of the node
- Version of the used standards
- List of publications needed to compute the results
- Direct access to the produced output
- When the data DOI is cited all the producers receives credits

The infrastructure technical architecture

Interconnected nodes

Species
 data-base

Registries

This infrastructure has been designed since 2009 so that data are:

- Easy to discover and to find
- Immediately accessible
- Interoperable
- Easy to reuse (mechanisms for data-citation and delegation of bibliographic credits)

This is $F_{\text {rawa }} A_{\text {cassbe }} \|_{\text {nemopease }} R_{\text {asasabe }}$ ante litteram!

The Fair Principles: definitions and impacts

First definition : Wilkinson et al, The FAIR Guiding Principles for scientific data management and stewardship. Sci Data 3, 160018 (2016). https://doi.org/10.1038/sdata.2016.18

Findable

- F1. (Meta)data are assigned a globally unique and persistent identifier
- F2. Data are described with rich metadata
- F3. Metadata clearly and explicitly include the identifier of the data they describe
- F4. (Meta)data are registered or indexed in a searchable resource

Accessible

- A1. (Meta)data are retrievable by their identifier using a standardised communications protocol
- A1.1 The protocol is open, free, and universally implementable
- A1.2 The protocol allows for an authentication and authorisation procedure, where necessary
- A2. Metadata are accessible, even when the data are no longer available

Interoperable

- I1. (Meta)data use a formal, accessible, shared, and broadly applicable language for knowledge representation.
- I2. (Meta)data use vocabularies that follow FAIR principles
- I3. (Meta)data include qualified references to other (meta)data

Re-usable

- R1. (Meta)data are richly described with a plurality of accurate and relevant attributes
- R1.1. (Meta)data are released with a clear and accessible data usage license
- R1.2. (Meta)data are associated with detailed provenance
- R1.3. (Meta)data meet domain-relevant community standards

The Fair Principles: definitions and impacts

- consortium

In few years FAIR became a MUST for data oriented initiatives and communities

```
\becauseO
\becauseCODATA
```

$\because \because$ CODATA About - Membership - Events -

I U P A C INTERNATINAL UNIONOE
PUREAND APLLED CHEMITR Publications .

Making Data Work for Cross-

FAIR Vocabularies
CoDATADecadal Programme
Data Science and Stewardship Data Scien Task Groups
AlR vocabularies are fundamental to interoperability within domains and across domains. One of the k Working Groups 2019 Dagstuhl workshop was the article ' 10 Simple Rules to Make a Vocabulary FAR' by Cox et al. That al Research mple and accessible guidelines which are being implemented in a joint working group with IUSSP.

WorldFAIR: Global
cooperation on FAIR data policy and practice

WP : Chemistry
https://iupac.org/worldfair-global-coope ation-on-fair-data-policy-and-practice/

First definition : Wilkinson et al, The FAIR Guiding Principles for scientific data management and stewardship. Sci Data 3, 160018 (2016). https://doi.org/10.1038/sdata.2016.18

The Fair Principles: definitions and impacts

- consortium

FAIR Data Maturity Model WG

D) Taxonomy:
Posts

Group Status:WGs Maintaining deliverables (maintenance group)

Status: Recognised \& Endorsed
Chair (s): Edit Herczog, Keith Russell, Shelley Stall
Secretariat Liaison: Stefanie Kethers
TAB Liaison: Karin Breitman

FAIR Data Maturity Model: core criteria to assess the implementation level of the FAIR data principles

Webinar - The RDA FAIR Data Maturity Model WG: Aligning International Initiatives for Promoting and Assessing FAIR Data 19/11/2020
Webinar - Connecting Data, Institutions and People: FAIR Digital Objects, RDA outputs and the design of the DiSSCo Research Infrastructure-18 March 2021

The RDA FAIR Data Maturity Model Working Group develops as an RDA Recommendation a common set of core assessment criteria for FAIRness and a generic and expandable self-assessment model for measuring the maturity level of a dataset. The aim is not to develop yet another FAIR assessment approach but to build on existing initiatives, looking at common elements and allowing the group to identify core elements for the evaluation of FAIRness. That will increase the coherence and interoperability of existing or emerging FAIR assessment frameworks and it will ensure the combination and compatibility of their results in a meaningful way.

The WG brings together stakeholders from different scientific and research disciplines, the industry and public sector, who are active and/or interested in the FAIR data principles and in particular in assessment criteria and methodologies for evaluating their real-life uptake and implementation level.

The RDA evaluation framework

FAIR Data Maturity Model WG

- taxonomy:

Group Status: © WGs Maintaining deliverables (maintenance group)
The recommendation consists of ~ 40 indicators
- 7 for Findable principle,
- 12 for Accessible
- 12 for Interoperable
- 10 for Reusable

Each indicator has a priority which determines its importance

- Essential
- Important
- Useful

The level of maturity for the indicator is an integer taking the following values

- 0 - non applicable
- 1 - not being considered yet
- 2 - under consideration or in planning phase
- 3 - in implementation phase
- 4 - fully implemented

FAIR Data Maturity Model WG

- Taxonomy:

Group Status: (0) WGS Maintaining deliverables (maintenance group)
We went through all criteria to assess the FAIRness of VAMDC

A priori thoughts:

- Maybe a quite technocratic generic document. Is it relevant for our science platform?
- We are already FAIR. Do we need this kind of evaluation?

Actually we learnt a lot!

Overview of the evaluation results

 RDA-A1-01M RDAA1-02M RDA-A1-02D RDA-A1-03M RDA-A1-03D RDA-A1-04M RDA-A1-04D RDA-A1-05D \quad RDA-A1.1- RDA-A1.1-01DRDA-A1.2-01D RDAAA-01M 01 M

Indicators for Interoperable

Overview of the evaluation results

Indicators for Interoperable

What we learnt: what we may improve

Interconnected nodes

What we learnt: what we may improve

What we learnt: what we may improve

What we learnt: what we may improve

Interconnected
 nodes

Registries

Three aspects may be improved in XSAMS standard

- Register this format as a standard into FAIRSharing "registry of types"
- Several enumerations in XSAMS (CategoryType in Methods, dataDescription Values in DataSet) are not defined in the schema nor in external dictionaries \rightarrow Define proper machine actionable FAIR dictionaries for these terms
- For codes of Processes there should be a PID resolving to the definition of these codes

```
Species
data-base
```

Query Store

Interconnected nodes

Registries

- The speciesDB/QS use no dictionary to express knowledge \rightarrow Define such dictionaries
- The speciesDB/QS contain references to the nodes but not to the registry information \rightarrow have a link to the related node-entry into registries.
- The speciesDB/QS contain references to the standards, but not in machine actionable way \rightarrow point to standards in machine actionable way
- Information from SpeciesDB/QS do not follow particular standard/format
\rightarrow Introduce standard for information from SpeciesDB/QS
- \rightarrow Describe the interfaces of SpeciesDB/QS in a standard way (both human and machine oriented ones)

What we learnt: what we may improve

Interconnected

nodes

Registries

- Registries uses terms from controlled vocabularies. Definition of these terms is not accessible directly \rightarrow Use FAIR compliant vocabulary (terms is a PID to its definition).
- The registries contain references to the standards, but not in machine actionable way \rightarrow point to standards in machine actionable way

```
Species
data-base
```


What we learnt: what we may improve

```
Interconnected nodes
```


Conclusions

The analysis was very useful !!

- The RDA FAIR Data Maturity Model, mainly designed for standalone data-sets or repositories, perfectly scales in the case of a distributed and complex e-infrastructure as VAMDC
- The FAIRness of VAMDC
- is satisfying for people aware of the infrastructure subtleties
- may be improved for newcomers and/or for transdisciplinary activities

The main lines of improvement identified may be summarized as follow:

- A single entry point should be provided to get all the information about a given node. Today this information is fragmented between the Species database and the Registry;
- The cross-references of metadata between the different pillar components should be in the form of persistent resolvable machine actionable identifiers;
- Register VAMDC standards and formats into ad hoc registries of types (e.g. FAIRsharing ones) and assign persistent resolvable machine actionable identifiers to each standard in order to easily refer to it;
- Systematically use FAIR compliant dictionaries to express knowledge;

Conclusions

The analysis was very useful !!

- The RDA FAIR Data Maturity Model, mainly designed for standalone data-sets or repositories, perfectly scales in the case of a distributed and complex e-infrastructure as VAMDC
- The FAIRness of VAMDC
- is satisfying for people aware of the infrastructure subtleties
- may be improved for newcomers and/or for transdisciplinary activities

The main obstacles that explain the unsatisfactory evaluation for the Reusable principle are related to the absence of a license-policy and the non-adoption of a standard representation for provenance information.

Very hard to define licenses in an international (i.e. multi-juridical) framework

Standard (W3C/IVOA) provenance representations are difficult to handle for end-users. A readme file fulfils VAMDC users' needs

Conclusions

The analysis was very useful !!

- The RDA FAIR Data Maturity Model, mainly designed for standalone data-sets or repositories, perfectly scales in the case of a distributed and complex e-infrastructure as VAMDC
- The FAIRness of VAMDC
- is satisfying for people aware of the infrastructure subtleties
- may be improved for newcomers and/or for transdisciplinary activities

The main obstacles that explain the unsatisfactory evaluation for the Reusable principle are related to the absence of a license-policy and the non-adoption of a standard representation for provenance information.

Very hard to define licenses in an international (i.e. multi-juridical) framework

Standard (W3C/IVOA) provenance representations are difficult to handle for end-users. A readme file fulfils VAMDC users' needs

- To go deeper: https://doi.org/10.1140/epjd/s10053-023-00649-x - Eur. Phys. J. D77, 70 (2023)
- These slides: https://tinyurl.com/asos2023

