Charge Exchange Recombination Spectroscopy of W Ions for ITER Neutral H-Beam Diagnostics and more on atomic data

Dipti International Atomic Energy Agency, Vienna, Austria

ASOS14, Paris 10-13 July, 2023

Acknowledgements

Yu. Ralchenko

D. Schultz

C. Hill

D. V. Fursa I. Bray H. Umar

Charge exchange recombination spectroscopy (CXRS)

H + A^{q+} → H⁺ + A^{(q-1)+*} (*nl*) → A^{(q-1)+*} (*n'l'*) + hv n ≈ q^{0.75}, e.g., for capture into H-like Fe²⁵⁺ ion, n ≈ 11

Illustration: NASA/CXC/M.Weiss

B. J. Wargelin et al., Can. J. Phys. 86, 151 (2008)

B. J. Wargelin et al., Can. J. Phys. 86, 151 (2008)

Applications of CXRS

Spectral diagnostics of fusion plasmas heated by neutral beam (NB)

- Determination of ion storage times in ion traps and storage rings
- Astrophysical relevance such as solar wind charge exchange in comets and planetary atmospheres

ITER and the NBI

Neutral beam injectors (NBI)

T ~ 150 -200 million °C Cost > \$20 billion

Divertor region (Plasma facing components are made of tungsten)

either 0.87 MeV H or 1 MeV D beams for heating

100 keV/u H beam for diagnostics such as ion temperature, plasma rotation, He concentration

CXRS of tungsten ions for ITER NB diagnostics

Plasma parameters:

T = 20 keV (Ne-like W⁶⁴⁺ is expected to be most abundant ion in the core of plasma)

 $n_e = 10^{14} \text{ cm}^{-3}$

 H neutral beam of energies 100 keV/u, 500 keV/u, 850 keV/u, and 1000 keV/u.

P. Beiersdorfer et al. JPB 43, 144008 (2010)

Rate equations of collisional-radiative model

$$\frac{dN(t)}{dt} = R(t, N_e, T_e, \dots)N(t), \sum_{q,k} N(q, k) = 1$$

$$\frac{dN_q(k)}{dt} = -N_q(k) \sum_{j \neq k} (n_e X^{kj} + n_p Y^{kj})$$

$$+ \sum_{j \neq k} N_q(j) (n_e X^{jk} + n_p Y^{jk})$$

$$-N_q(k) \sum_{j < k} A^{kj} + \sum_{j > k} N_q(j) A^{jk}$$

$$-N_q(k) \sum_l S^{kl}_{q,q+1} + \sum_m N_{q+1}(m) \alpha^{mk}_{q+1,q}$$

$$-N_q(k) \sum_l \alpha^{kl}_{q,q-1} + \sum_m N_{q-1}(m) S^{mk}_{q-1,q}$$

Schematic diagram of NOMAD^{*} Code

(Dielectronic capture)

Collisional-radiative Model

- includes Si-like W⁶⁰⁺ through the O-like W⁶⁶⁺ ions and the ground state of N-like W⁶⁷⁺ ion.
- Atomic structure has been calculated using relativistic configuration

For an L-shell ion	1s ² 2s ² 2p ^k (ground state configuration)		
	1s²2s²2p ^{k-1} nl (n ≤ 50)	n ≈ q ^{0.75} ≈ 22	
	1s²2s2p ^k nl (n ≤ 15)	•	
	1s²2s²2p ^{k-2} 3lnl' (n ≤ 5)		

Total number of levels included in the model are about **48 000**.

 nl-resolved CX cross sections were calculated using the classical trajectory Monte Carlo simulations by D. R. Schultz

Rate (CX) = $n_o v_r \sigma_{CX}$ ($n_o v_r = 10^{15} \text{ cm}^{-2}\text{s}^{-1} - 10^{17} \text{ cm}^{-2}\text{s}^{-1}$)

n-resolved CX cross sections

nl-resolved CX cross sections

Simulated spectra in 0.1 nm to 1000 nm

Spectra in lower wavelength 0.1 nm to 10 nm are not affected by CX. Transitions 2-3, 3-3, 3-4, 3-5

Simulated spectra.....

Population distribution with and without CX for DNB

 $T_e = 20 \text{ keV}, n_e = 10^{14} \text{ cm}^{-3}, n_o v = 10^{16} \text{ cm}^{-2} \text{s}^{-1}$

Visible CXRS diagnostic for ITER and other tokamaks

Lines of interest for CXRS for JET*

CX cross sections are available in IAEA's database: CollisionDB.

*N. C. Hawkes *et al.,* Rev. Sci. Instrum. **89**, 10D113 (2018)

Dipti, D. R. Schultz, and Yu. Ralchenko, Plasma Phys. Control. Fusion **63**, 115010 (2021)

CollisionDB : Database of Plasma collisional processes

←

- Cross sections and rate coefficients for atomic and • molecular collisional processes to support fusion and other areas of plasma research
- Evaluated data from IAEA's old database ALADDIN. •
- Data is described with rich metadata and provided in ٠ standardized format
- Data retrievable by search and identifier from a • browser and through an API

CollisionDB: Dat	aSet Search × +		
→ C	db-amdis.org/collisiond	b/search/	
Collis	ionDB	Home Search Contributing Fit Functions About -	
1	Search DataSets There are currently 122,352 d	atasets. Click here for advice on specifying species and states.	
	Please contact <u>ch.hill@iaea</u>	a.org with any questions or comments about this prototype data service.	
	① Reactant 1:	① Reactant 2:	
	① Product 1:	① Product 2:	
	① DOI:		
	① Author:		
	① Method:	V	
	① Data Type:	V	
	 Process Types: 	:: COM: Composite Process with Multiple Channels EAE: Auger Electron Ejection EAS: Angular Scattering EBS: Bremsstrahlung EDA: Dissociative Attachment EDC: Dielectronic Capture EDE: Dissociative Excitation EDP: Depolarization, Change of Polarization EDP: Dissociative Recombination A description of three-letter process codes is given here.	
		Select multiple Keywords by clicking whilst holding down CTRL (Windows, Linux) or CMD (光) (macOS) Search Clear	

DataSet D76390

Process HCX: Charge Transfer	3
Data cross section uploaded on 2022-05-26 type	"qid": "D76390", "reaction": "W+61 + H 1s \u2192 W+60 n=100 + H+"
$ \begin{array}{ll} Total and state-selective charge exchange cross sections for recombination of O-like to Al-like W ions with atomic hydrogen at collision energies relevant to the ITER neutral beams. The n- or nl-resolved cross sections not listed in the database for a given value in (n \leq 120, l \leq n-1)$ are 0 at all considered energies.	<pre>"process_types": { "HCX": "Charge Transfer" }, "data_type": "cross section", "refs": { "B22": { "doi": "10.1088/1361-6587/ac206c" } }, "ison comment": { "comment": "Total and state-selective CX cross sections for recombination of O-like to Al-like W ions" }</pre>
Method CTMC: Classical trajectory Monte Carlo	"json_data": {
Frame Target	"method": "CTMC", "columns": [
Columns 1. E /eV u ⁻¹ 2. sigma /cm ²	{ "name": "E",
Ref B22: Dipti, D. R Schultz, Y. Ralchenko, "Charge exchange recombination spectroscopy of W (q+) (q = 61-66) for application to ITER neutral hydrogen beam diagnostics ", <i>Plasma Physics and Controlled Fusion</i> 63, 115010 (2021). [10.1088/1361-6587/ac206c] Data Download	"units": "eV.u-1" }, { "name": "sigma", "units": "cm2"
W+61 + H 1s W+60 n=100 + H+	
10 ⁻¹²	1.000e+05 2.015e-18 5.000e+05 1.184e-18 8.500e+05 6.41e-20 1.000e+06 2.585e-20
2.000+-5 6.000+-5 8.000+-5 1.000+-6 E //V.u-1	

PyCollisionDB: API Library

• Python package for interacting with the CollisionDB API ; data exploration, data transformation, plotting, etc.

Example:

>>> from pycollisiondb.pycollisiondb import PyCollision

>>> # Datasets retrieved from the server as a dict keyed by pk ID. >>> pycoll.datasets {102737: D102737: H+ + H 1s \rightarrow H+ + H+ + e-, 107356: D107356: H+ + H 1s \rightarrow H+ + H+ + e-, 103103: D103103: H 1s + H+ \rightarrow H+ + H+ + e-, 103104: D103104: H 1s + H+ \rightarrow H+ + H+ + e-}

>>> # Energy is changed from eV.u-1 (default) to keV.u-1 and sigma from cm2 (default) to a02. >>> # This accesses the pyqn library. >>> pycoll.convert units({'E': 'keV.u-1', 'sigma': 'a02'}) >>> import matplotlib.pyplot as plt
>>> %matplotlib notebook
>>> fig, ax = plt.subplots()
>>> pycoll.plot_all_datasets(ax, label=('reaction', 'qid', 'refs', 'process_types'))
>>> plt.legend()

Data evaluation: recommended collisional data for Be I

Recommended electron-impact excitation and ionization cross sections for Be I

Dipti^{a,*}, T. Das^{b,1}, K. Bartschat^c, I. Bray^d, D.V. Fursa^d, O. Zatsarinny^c, C. Ballance^e, H.-K. Chung^{b,2}, Yu. Ralchenko^{a,*}

^a National Institute of Standards and Technology, Gaithersburg, MD 20899, USA

^b International Atomic Energy Agency, A-1400 Vienna, Austria

^c Department of Physics and Astronomy, Drake University, Des Moines, IA 50311, USA

^d Curtin Institute for Computation and Department of Physics, Astronomy and Medical Radiation Science, Curtin University, GPO Box U1987, Perth, WA 6845, Australia

^e School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, Northern Ireland, United Kingdom

Recommended collisional data for **Be II**: Overview of data

- Ground state: 1s²2s ²S
- $1s^2 n l^2 L$ ($n \le 4$; $l \le n-1$)

- R-matrix (RM-14)
- R-matrix with pseudo states (RMPS-26, RMPS-49)
- Convergent-close-coupling (CCC-54, CCC-64)
- K-matrix (KM-20)
- Time-dependent close-coupling
- Distorted-wave method
- ≻

New calculations with CCC-84 for $1s^2nl^2L$ ($n \le 5$; $l \le n-1$) by D. V. Fursa and his group

Atomic Structure calculations for Be II: line strengths (S)

Analytic fits for excitation

- Dipole-allowed ($\Delta L = \pm 1$): $\Omega(x) = A_0^2 \ln(x) + A_1 + \frac{A_2}{x} + \frac{A_3}{x^2} + \frac{A_4}{x^3} + \frac{A_5}{x^4}$
- Dipole-forbidden ($\Delta L \neq \pm 1$): $\Omega(x) = A_0^2 + \frac{A_1}{x} + \frac{A_2}{x^2} + \frac{A_3}{x^3} + \frac{A_4}{x^4}$

correct asymptotic behaviors

Ionization

Thank you for your attention !!!