#### Lanthanide and Actinide Opacity Computations for Kilonova Modeling

Jérôme Deprince

Université Libre de Bruxelles Astronomy and Astrophysics Institute

ASOS-14, Paris, France

July 10, 2023







#### \* ULB (Université Libre de Bruxelles):

- Stéphane Goriely
- Michel Godefroid
- \* UMONS (Université de Mons):
  - Pascal Quinet
  - 🕨 Patrick Palmeri
  - ▶ Helena Carvajal Gallego
  - ► Sirine Ben Nasr



ULB

#### 1. Neutron star mergers and kilonovae

#### 2. Theoretical method

Atomic structure computation: HFR Expansion opacity

#### 3. Existing works

4. Results

Opacity sensitivity to atomic properties Lanthanide and actinide expansion opacities Actinide VS lanthanide opacities

#### 5. Conclusion

### Kilonovae

ULB

Detection of gravitational waves from neutron star merger GW170817 for the first time on August 17, 2017 (Abbott B.P. *et al.*, Phys. Rev. Lett. **119**, 161101, 2017)



- NSMs also produce an electromagnetic signal powered by the ejection of hot and radioactive matter: kilonova (KN)
- GW170817 EM counterpart also detected: KN AT2017gfo
- KNe thought to be responsible for heavy element production

1. Neutron star mergers and kilonovae

### Kilonova opacity

- KN light curve modeling strongly depends on atomic opacities
- KN opacity dominated by millions of lines from f-shell elements
   (→ lanthanides + actinides) newly created by r-process

| ,[     | Group<br>I<br>IA<br>I<br>I<br>Sw<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | At                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | omic F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Prope                                                                                | rties                   | of t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | he E              | leme                      | ents                                                                                                                      | z ha mod acce                      | _                                                                               | Physical M<br>Standard F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5                                          | Natio<br>Stand<br>U.S. D<br>V Laborat                        | nd Entitut<br>ands und 1<br>parlment of<br>XY www.nit.<br>Lgover                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e of<br>kelonalogy<br>Cammerce<br>gaspra     | 18<br>VIIA<br>2 3<br>He                                                         |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------|
| 2      | Totaling         2           1:33888         BA           3         5%           Li         Be           Union         6/02           5%         1/2/2           3.33888         5%           4.5%         5%           5%         1/2/2           5%         1/2/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Planck can<br>elementary<br>Aregadro to<br>bellamann i<br>election with<br>election with<br>election male<br>pratico male<br>energy eq<br>pratico male<br>energy eq<br>pratico male                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Datt<br>sharpe<br>snatant<br>smellant<br>skalent<br>shalent<br>shalent<br>e constant |                         | KADB 107 11 K 10 <sup>-10</sup> Hz <sup>-1</sup> (meet)     KADB 107 11 K 10 <sup>-10</sup> Hz <sup>-1</sup> (meet)     KADB 107 11 K 10 <sup>-10</sup> L <sup>-10</sup> (max)     KADB 107 11 <sup>-10</sup> L <sup>-11</sup> (max)     KADB 107 11 <sup>-10</sup> L <sup>-11</sup> (max)     KADB 100 11 <sup>-10</sup> L <sup>-11</sup> (max)     KADB 100 10 <sup>-10</sup> L <sup>-11</sup> (max)     KADB 10 <sup>-10</sup> L <sup>-11</sup> (max)     (max) |                   |                           | Autor of Press 200<br>even outsides, with<br>prickle genomens.<br>Solids<br>Liquids<br>Gasses<br>Artificially<br>Prepared |                                    |                                                                                 | 13<br>IIA<br>5 <sup>1</sup> Fe<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14<br>MA<br>C<br>Caster<br>12000<br>1,2402 | 15<br>VA<br>7 *5%<br>N<br>12355<br>12355                     | 16<br>VIA<br>8 <sup>16</sup> y<br>0 00000<br>11.000<br>11.000<br>11.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17<br>VIA<br>9 %***<br>F                     |                                                                                 |
| Period | Na<br>5054m<br>22.960<br>19 <sup>1</sup> 5 <sub>16</sub><br>2<br>V<br>19 <sup>1</sup> 5 <sub>16</sub><br>2<br>V<br>Potention<br>2<br>V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mg<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special<br>special                                                                                                                                                                                                                                                                                                                                                                                                                                        | A IVE States                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5<br>VB<br>23 '5 m<br>VB                                                             | 6<br>VIB<br>24 '%<br>Cr | 7<br>VIIB<br>25 %,<br>Mn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8<br>26 '0,<br>Fe | 9<br>-VIII-<br>27 %<br>Co | 10<br>28 '7,<br>Ni                                                                                                        | 11<br>18<br>29 <sup>15</sup><br>Cu | 12<br>11B<br>30 %,<br>Zn                                                        | AI In A State Stat | Si<br>Sissi<br>Partin<br>32<br>Ge          | P<br>rogans<br>san<br>san<br>san<br>san<br>san<br>san<br>san | S at a star star star star star star star                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CI<br>SAU<br>MUNS<br>TURNS<br>35 Fri<br>Br   | Ar<br>Ar<br>Ar<br>Ar<br>Ar<br>Ar<br>Ar<br>Ar<br>Ar<br>Ar<br>Ar<br>Ar<br>Ar<br>A |
| 6      | 37 <sup>1</sup> 5 <sub>10</sub> 3<br><b>Rb</b><br>51450 1<br>51450 1 | Sr Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 12000<br>2 120000<br>2 12000<br>2 | ALL DE NELL                                                                          | Mo<br>Mo                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 44 V.<br>Ru       | 45 % Rh                   | 46 %<br>Pd<br>*****                                                                                                       | AT THE AG                          |                                                                                 | 49 %<br>10 10 10 10 10 10 10 10 10 10 10 10 10 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 50 %<br>510 %<br>Sn                        | SD SD                                                        | 52 %<br>52 %<br>Te<br>beton<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6<br>107.6 | 53 14 10 10 10 10 10 10 10 10 10 10 10 10 10 | 54<br>Xe<br>Xe<br>Xe<br>Xe<br>Xe                                                |
| 6      | Cs<br>Cs<br>(122.11<br>(5.05<br>3.050<br>87 - 15.05<br>87 - 15.05<br>80 - 15.05                                                                                                                                     | Ba<br>Ma<br>Ra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Hf<br>International<br>International<br>International<br>Rf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ta                                                                                   | W<br>106<br>Sg          | Re<br>107<br>Bh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Os<br>Es<br>Hs    | Ir<br>109<br>Mt           | Pt<br>110<br>Ds                                                                                                           | Au<br>III<br>Rg                    | Hg<br>Hg<br>Hg<br>Hg<br>Hg<br>Hg<br>Hg<br>Hg<br>Hg<br>Hg<br>Hg<br>Hg<br>Hg<br>H | TI<br>113<br>113<br>Nh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pb<br>III<br>FI                            | Bi<br>Mc                                                     | Po E E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | At<br>At<br>TS                               | Rn                                                                              |
| 59     | Alarma<br>Number<br>58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Canone<br>Ca | ST La St Barrenser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 58 G<br>Ce                                                                           | Pr<br>Pr                | S Nd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 61 %<br>Pm        | 62 'r.<br>Sm              | 67 54<br>Eu                                                                                                               | 64 bi<br>Gd                        | 65 Main<br>Th                                                                   | 6 ', Dy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FT HO                                      | GB THE SECOND                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 70 YD                                        | 71 t<br>Lu                                                                      |

#### 1. Neutron star mergers and kilonovae

ULB

### **ULB** Kilonova opacity

UNIVERSITÉ LIBRE DE BRUXELLE



(S. Goriely, O. Just, private communication)

⇒ Lanthanide and actinide contributions to the opacity are of paramount importance due to their large spectral density and abondances

1. Neutron star mergers and kilonovae

Jérôme Deprince

3/28

# Kilonova modeling

- Many studies are based on a simple but powerful one-zone approximation (*e.g.* Metzger 2019, Hotokezaka & Nakar 2020)

   → Ejecta = expanding homogeneous sphere with gray opacity
- Monte-Carlo approaches solve the radiative-transfer eqs very accurately using atomic-physics based opacities, but are computationally expensive and often assume analytic ejecta distributions (*e.g.* Kasen *et al.* 2017, Kawaguchi *et al.* 2019)
- ► Intermediary approach: truncated two-moment approximation (so-called M1 scheme), which assumes a local closure relation ("equation of state") for the radiation field (Just *et al.* 2022)
   → fills the gap between the two approaches above in terms of both accuracy and complexity

ULB

### Kilonova opacity

So far, the KN total opacity in Just *et al.* 2022's code is estimated using crude approx to atomic-physics based model, motivated by fits to bolometric KN light curves

 $\kappa(X_{\text{LA}}, T) = \kappa_{\text{LA}} \times \kappa_T$ 

where the  $X_{LA}$ -dependent part is

$$\kappa_{\rm LA} \equiv \begin{cases} 30\,{\rm cm}^2\,{\rm g}^{-1}(X_{\rm LA}/10^{-1})^{0.1} &, X_{\rm LA} > 10^{-1}\,, \\ 3\,{\rm cm}^2\,{\rm g}^{-1}(X_{\rm LA}/10^{-3})^{0.5} &, 10^{-3} < X_{\rm LA} < 10^{-1}\,, \\ 3\,{\rm cm}^2\,{\rm g}^{-1}(X_{\rm LA}/10^{-3})^{0.3} &, 10^{-7} < X_{\rm LA} < 10^{-3}\,, \\ 0.2\,{\rm cm}^2\,{\rm g}^{-1} &, X_{\rm LA} < 10^{-7}\,, \end{cases}$$

(Just, Kullman, Goriely et al., MNRAS **510**, 2820, 2022)

and the temperature-dependent part is

 $\kappa_T \equiv \begin{cases} 1 & , T > 2000 \,\mathrm{K} \\ \left(\frac{T}{2000 \,\mathrm{K}}\right)^5 & , T < 2000 \,\mathrm{K} \,. \end{cases}$ 

X<sub>LA</sub>: average lanthanide+ actinide mass fraction

→ Realistic KN opacity would require big amounts of reliable atomic data (structure + radiative data for all transitions) for both lanthanides and actinides

1 Neutron star mergers and kilonovae

### **ULB** Kilonova: physical conditions

JNIVERSITÉ LIBRE DE BRUXELLE



Temperature VS density of the KN photosphere Just and Goriely, private communication



 $\Rightarrow$  Only the first ionization stages (I - IV) of the elements are present in the KN ejecta

1. Neutron star mergers and kilonovae

Jérôme Deprince

6/28

# **ULB** Pseudo-relativistic Hartree-Fock Method

- Based on Schrödinger equation
- ► Orbitals obtained for each config. by solving the HF eqs (→ variational principle to the config. average energy)
- Relativistic corrections added perturbatively

Advantages of HFR method:

- ► Calculation is relatively quick, even for a large number of configurations considered (→ large number of transitions)
- States from all the configurations are optimized
- ⇒ Suitable to compute physical properties as opacity which requires to consider large numbers of transitions (→ lanthanides and actinides) all fairly well described

#### 2. Theoretical method a) Atomic structure computation: HFR

Expansion opacity:

$$\kappa^{\mathsf{bb}}_{\mathsf{exp}}(\lambda) = rac{1}{
ho ct} \sum_l rac{\lambda_l}{\Delta \lambda} (1-\mathsf{e}^{- au_l})$$

with the Sobolev optical depth:

$$\tau_l = \frac{\pi e^2}{m_e c} t n_l \lambda_l f_l$$

 $\Rightarrow \text{ Radiative wavelength } \lambda_I \text{ and oscillator strength } f_I \text{ are needed} \\ \text{to compute the expansion opacity (+ level population } n_I) \end{cases}$ 

(n<sub>1</sub> is determined using Boltzmann and Saha equations)

Jérôme Deprince

2. Theoretical method

b) Expansion opacity

## **ULB** Works on lanthanide opacities

- Recent studies for weakly-charged lanthanide opacities, e.g.: ▶ Kasen *et al.* (2013)  $\rightarrow$  Nd I – IV, Ce II – III using AUTOS ▶ Gaigalas et al. (2019)  $\rightarrow$  Nd II – Nd IV using GRASP • Gaigalas et al. (2020)  $\rightarrow$  Er III using GRASP ▶ Radžiūtė et al. (2020)  $\rightarrow$  Pr II – Gd II using GRASP Tanaka et al. (2020)  $\rightarrow$  All lanthanides using HULLAC Fontes et al.  $(2020) \rightarrow All$  lanthanides using Los Alamos codes ▶ Carvajal Gallego *et al.* (2021)  $\rightarrow$  Ce II – IV using GRASP ▶ Rynkun et al. (2022)  $\rightarrow$  Ce IV using GRASP and HULLAC • Gaigalas et al. (2022)  $\rightarrow$  Pr IV using GRASP
  - Silva et al. (2022)  $\rightarrow$  Nd III using FAC
  - ► Flörs, Silva, Deprince *et al.* (2023, accepted) → Nd II – III using FAC and HFR (this work)
- + Several works on moderately-charged lanthanides (early-phase kilonovae) from Carvajal Gallego *et al.* and Banerjee *et al.* 3. Existing works

- Only very few works focused on actinide opacities, e.g.:
  - ▶ Silva et al. (2022)  $\rightarrow$  (Nd III and) U III using FAC
  - ▶ Fontes et al. (2023)  $\rightarrow$  All actinides using Los Alamos codes
  - ▶ Deprince, Carvajal Gallego, Godefroid *et al.* (2023) → U II – IV using HFR (sensitivity studies, this work)
  - Flörs, Silva, Deprince et al. (2023, accepted)
     → (Nd II III) and U II III using FAC and HFR (this work)

#### Models for U III

JNIVERSITÉ

- Silva et al. 2022 (FAC): 5f<sup>4</sup> +5f<sup>3</sup>{6d+6f} + 5f<sup>3</sup>{7s+7p+7d} + 5f<sup>3</sup>{8s+8p} + 5f<sup>2</sup>{6d<sup>2</sup>+6d7s} (10 configurations)
- Our work (HFR): 5f<sup>4</sup> + 5f<sup>3</sup>{6d+6f+6g} + 5f<sup>3</sup>{7s+7p+7d+7f+7g} + 5f<sup>3</sup>{8s+8p+8d+8f+8g} + 5f<sup>3</sup>{9s+9p+9d+9f+9g} + 5f<sup>2</sup>{6d<sup>2</sup>+6d7s+6d7p+6d7d+7s<sup>2</sup>+7s7p+7s7d} (26 configurations)

How are the computed opacities affected by the multiconfiguration model (by the number of config.) ? Convergence of the models?

Jérôme Deprince

#### 4. Results

# ULB Model convergence for U III

Convergence of the opacity while considering growing models (more configurations added shell by shell)



JNIVERSITÉ LIBRE DE

Calibration procedure used in HFR: adjustement of the configuration average energies to the ones deduces from available energy levels

In both U II and U III, level inversion occurs in our computations between (namely) the ground state and one of the first excited states

- $\rightarrow$  Our calibration procedure solves this level inversion problem
  - Is such an adjustment procedure worth it in order to compute opacities (at least in a first step)?

(Deprince, Carvajal Gallego, Godefroid et al. 2023)

Jérôme Deprince

#### 4. Results

# **ULB** Calibration procedure (U III)



# **ULB** Calibration procedure (U II)



Jérôme Deprince

UNIVERSIT

4. Results

## **ULB** Core-polarization effect

- HFR: not all the correlations are explicitly taken into account
   Model = ionic core + config. involving valence electrons
- UMONS team (Atomic Physics and Astrophysics Unit) has modified Cowan's codes to include a core-polarization correction to the potential (Quinet *et al.*, MNRAS 307, 934, 1999)
- Can be tricky to include for elements for which *n*f subshell is partially filled (ionic core not clearly defined)
- Is this effect worth being included in our opacity computations (in a first step)?

(Deprince, Carvajal Gallego, Godefroid et al. 2023)

Jérôme Deprince

#### 4. Results

#### Core-polarization effect (U II) ULB



UNIVERSIT

# Importance of considering realistic partition functions (Nd opacity case)



Significant difference between our HFR opacity and the one computed by Tanaka *et al.* 2020 using HULLAC

Atomic data → Importance of the multiconfiguration model! (7 and 8 configs included for Nd II and Nd III in Tanaka *et al.*)

#### 4. Results

a) Opacity sensitivity to atomic properties

ULB

Jérôme Deprince

18/28

# Importance of considering realistic partition functions (Nd opacity case)

- Expansion opacity computation itself
  - $\rightarrow$  In Tanaka *et al.* (2020) (as well as in Gaigalas *et al.* 2019), the partition function U(T) is approximated to  $g_0$  in the evaluation of level populations  $n_l (\rightarrow \tau_l)$ :

$$n_{l} = \frac{g_{l}n}{U(T)} \exp(-E_{l}/kT)$$
$$\tau_{l} = \frac{\pi e^{2}}{m_{e}c} t n_{l} \lambda_{l} f_{l}$$

$$U(T) = \sum_{i=0}^{\infty} g_i \exp\left(-\frac{E_i - E_0}{kT}\right), \quad g_i = 2J_i + 1$$

Jérôme Deprince

4. Results

### Partition Function of Nd III

For Nd III, for T = 5000 K, U is about 6 times greater than  $g_0!$ 



ULB

### **ULB** Comparison with other works



GRASP: Gaigalas, Kato, Rynkun *et al.* (2019) HULLAC: Tanaka, Kato, Gaigalas *et al.* (2020)

(Opacities recomputed using their atomic data  $\rightarrow U(T)$  NOT approximated to  $g_0$ ) FAC + HFR (This work): Flörs, Silva, Deprince *et al.* (2023)

#### 4. Results

Jérôme Deprince

UNIVERSITÉ

b) Lanthanide and actinide expansion opacities

### Comparison with other works



Flörs, Silva, Deprince et al. (2023)

#### 4. Results

b) Lanthanide and actinide expansion opacities

ULB

## **ULB** Opacity of weakly-charged lanthanides



Jérôme Deprin

UNIVERS

b) Lanthanide and actinide expansion opacities

## **ULB** Opacity of weakly-charged actinides



Jérôme Deprince

4. Results

b) Lanthanide and actinide expansion opacities

AA

### U VS Nd opacities

JNIVERSITÉ LIBRE DE BRUXELLES

ULB



25/28

# Lanthanide and actinide Planck mean opacities



### Conclusion

JNIVERSITÉ LIBRE DE BRUXELLES

ULB

- Opacity computations needed to model kilonova light curves
  - → Reliable atomic data for as many transitions as possible
     Especially for lanthanides and actinides which are expected to dominate the KN opacity
- Lanthanides: several works exist but can be improved
- Actinides: very few works
  - $\rightarrow$  Multiconfiguration model choice is of crucial importance
  - $\rightarrow$  Partition functions fully-computed (not approximated to  $g_0$ )
- HFR expansion opacities computed for all weakly-charged lanthanides and actinides for a grid of *T*, *ρ* and time
- Opacity for U as large as for Nd or even greater
  - ⇒ Actinides can be as important as lanthanides concerning their contributions to the KN opacity

- Prospects
  - Average the computed opacities with the expected elemental abundances for several NSM cases (nucleosynthesis simulations from S. Goriely, ULB) to infer the KN total opacity
  - Implement the new atomic opacity data in kilonova light curve model (O. Just's code, Just *et al.* 2022)
  - Try to improve atomic data (especially for the most contributing species)
    - $\Rightarrow$  Investigate impact on the computed opacities
  - Exhaustive comparison with the opacities computed by other groups using other methods (GSI/Lisbon University, NIST-Los Alamos Lanthanide Opacity Database, Japan-Lithuania Opacity Database for Kilonova)

ULB

JNIVERSITÉ

#### 5. Conclusion