

Atomic-structure calculations for ultracold gases of lanthanides

Maxence Lepers In memory of Jean-François Wyart

Conference ASOS, Paris, July 10, 2023

Laboratoire Interdisciplinaire Carnot de Bourgogne **ICB UMR CNRS 6303** M. Lepers icb.u¹bourgogne.fr

Ultracold gases (cold atoms)

- Temperatures in nK-mK range
- Bose-Einstein condensation
- Precision measurements (atomic clocks)
- Quantum technologies

Ultracold gases (cold atoms)

- Temperatures in nK-mK range
- Bose-Einstein condensation
- Precision measurements (atomic clocks)
- Quantum technologies

Dipolar gases:

- Lanthanide magnetic atoms
- Anisotropic and long-range dipolar interactions
- Quantum simulation, manybody physics, ...

M. Norcia & F. Ferlaino, Nat. Phys. **17**, 1349 (2021) L. Chomaz *et al.*, Rep. Prog. Phys. **86**, 026401 (2023)

10/07/2023

Atomic data for laser-cooling

Many cycles of **absorption – spontaneous emission**

Atomic data for laser-cooling

Need A_{ik} Einstein coefficients, branching ratios, line strengths... to characterize cooling and trapping efficiencies

Laser-cooling scheme for neutral Er

J. J. McClelland *et al.*, PRL **96**, 143005 (2006) G. A. Phelps *et al.*, arxiv:2007.10807 (2020)

10/07/2023

Laser-cooling scheme for neutral Er

J. J. McClelland *et al.*, PRL **96**, 143005 (2006) G. A. Phelps *et al.*, arxiv:2007.10807 (2020)

10/07/2023

The species under consideration

Er₂

The species under consideration

The species under consideration

- Ho Rydberg states
- J. Hostetter et al., Phys. Rev. A 91, 012507 (2015)

• Er Rydberg states

A. Trautmann et al., Phys. Rev. Research 3, 033165 (2021)

10/07/2023

Einstein A_{ik} coefficients for lanthanides – Er⁺

 Many measurements published by the Wisconsin group

Ex: for Er⁺, J.E. Lawler *et al.*, ApJSS **78**, 171 (2008)

418 experimental A_{ik} for [289; 1984] nm, levels up to 46750 cm⁻¹

Einstein A_{ik} coefficients for lanthanides – Er⁺

• Many measurements published by the Wisconsin group

Ex: for Er⁺, J.E. Lawler *et al.*, ApJSS **78**, 171 (2008)

418 experimental A_{ik} for [289; 1984] nm, levels up to 46750 cm⁻¹

BUT: 21 000+ possible transitions (with E1 approximation)

Use experimental A_{ik} to adjust a set of appropriate parameters
 Predict non measured A_{ik} coefficients

10/07/2023

Principle of the calculations

Semi-empirical calculations of energies

Similar for **energies** and Einstein A_{ik} coefficients

- 1. Ab initio calculations (Hartree-Fock + relativistic = **HFR**) for a set of chosen **electronic configurations** => $\{P_{nl}(r)\}$
- 2. Building the **atomic Hamiltonian** for each **parity and** *J*

H = radial part $\{P_{nl}(r)\}$ × angular part (Racah algebra)

- 🛑 Eigenvalues <mark>(energies)</mark> & eigenvectors (Landé g factors, A_{ik})
- 3. Least-square fitting of energies by adjusting radial parameters

Robert D. Cowan's suite of codes A. Kramida, Atoms **7**, 64 (2019)

Semi-empirical calculations of energies

Similar for **energies** and Einstein A_{ik} coefficients

- 1. Ab initio calculations (Hartree-Fock + relativistic = **HFR**) for a set of chosen **electronic configurations** => $\{P_{nl}(r)\}$
- 2. Building the **atomic Hamiltonian** for each **parity and** *J*

H = radial part $\{P_{nl}(r)\}$ × angular part (Racah algebra)

- 🛑 Eigenvalues <mark>(energies)</mark> & eigenvectors (Landé g factors, A_{ik})
- 3. Least-square fitting of energies by adjusting radial parameters

Robert D. Cowan's suite of codes A. Kramida, Atoms **7**, 64 (2019)

Semi-empirical calculations of A_{ik} coefficients

$$A_{ik} = \frac{\omega_{ik}^3 |\langle i \| \mathbf{d} \| k \rangle|^2}{3\pi\varepsilon_0 \hbar c^3 (2J_i + 1)}$$

$$|i,k\rangle = \sum_{b} c_{b} |b\rangle$$

Semi-empirical calculations of A_{ik} coefficients

$$A_{ik} = \frac{\omega_{ik}^{3} |\langle i \| \mathbf{d} \| k \rangle|^{2}}{3\pi\varepsilon_{0} \hbar c^{3} (2J_{i} + 1)} \qquad |i, k\rangle = \sum_{b} c_{b} |b\rangle$$
$$\equiv A_{t} = \left(\sum_{j} a_{tj} \times r_{j}\right)^{2}$$

 a_{tj} depend on **eigenvalues** and eigenvectors (previous slide)

$$r_j = \int_0^{+\infty} dr P_{nl}(r) r P_{n'l'}(r) = adjustable parameters$$

(nl, n'l') safistify the electric-dipole selection rules

$$r_j = f_j \times r_{j,\rm HFR}$$

10 adjustable r_i parameters, 5 groups

10/07/2023

Semi-empirical calculations of A_{ik} coefficients

Linear standard deviation

$$\sigma_A = \left[\frac{\sum_{i=1}^{N_{\rm tr}} \left(A_{t,\rm cal} - A_{t,\rm exp}\right)^2}{N_{\rm tr} - N_{\rm par}}\right]^{1/2}$$

10/07/2023

Semi-empirical calculations of A_{ik} coefficients

10/07/2023

Results for erbium

Fitted energy levels

Experimental levels from NIST databasze

Fitted energy levels

10/07/2023

Predicted energy levels

Experimental levels (long dashes) + predicted levels (short dashes)

10/07/2023

M. Lepers

Fitting of A_{ik} coefficients

Group Number	Subshell pair	Scaling factor
1	$\langle 4f^{12}\mathbf{6s} r 4f^{12}\mathbf{6p} angle$	0.886
2	$\langle 4f^{11}6s^2 r 4f^{12}6s6p angle$	0.876
3	$\langle 4\mathrm{f}^{11}\mathrm{5d}\mathbf{6s} r 4\mathrm{f}^{12}\mathrm{5d}\mathbf{6p}\rangle$	0.797
4	All (5d r 6p)	0.808
5	All $\langle \mathbf{4f} r \mathbf{5d} \rangle$	0.817
	$\sigma_{ m A}$ (s ⁻¹)	4.66 x 10 ⁶
	$\sigma_{ m lgA}$	0.217
2.2 % o f	f the largest A _{exp}	
		U.61 < most rati

10/07/2023

Including all experimental transitions

22 transitions with ratio < 0.2 or > 5

Including all experimental transitions

A. Kramida, FST 63, 313 (2013)

10/07/2023

Dynamic dipole polarizability (Er⁺)

10/07/2023

Dynamic dipole polarizability (neutral Er)

Comparison with ultracold experiment (Innsbruck)

J. H. Becher et al., Phys. Rev. A 97, 012509 (2018)

10/07/2023

Conclusion & propospects

- Calculation of A_{ik} coefficients for complex cold atoms
- Using least-square fitting to experimental values
- > Package *FitAik* working in **interaction with Cowan**

https://gitlab.com/labicb/fitaik/

Publication in CaDDiAcS database

https://vamdc.icb.cnrs.fr/caddiacs/

- Results for Er⁺, but also Er, Dy, Ho, Cr, Nd
- Future calculations: Tm, Tm⁺, ...

Conclusion & propospects

- Calculation of A_{ik} coefficients for complex cold atoms
- Using least-square fitting to experimental values
- > Package *FitAik* working in **interaction with Cowan**

https://gitlab.com/labicb/fitaik/

Publication in CaDDiAcS database

https://vamdc.icb.cnrs.fr/caddiacs/

- Results for Er⁺, but also Er, Dy, Ho, Cr, Nd
- Future calculations: Tm, Tm⁺, ...

Thank you for your attention !

REGION BOURGOGNE FRANCHE COMTE

10/07/2023

Angular part of the Hamiltonian

Angular basis sets (in LS coupling)

 $|b\rangle = |n_1 l_1^{w_1} \alpha_1 L_1 S_1, n_2 l_2^{w_2} \alpha_2 L_2 S_2, LSJM\rangle$

- Orbital angular momentum:
- Spin angular momentum:
- Total angular momentum:

$$\vec{L} = \vec{L}_1 + \vec{L}_2$$
$$\vec{S} = \vec{S}_1 + \vec{S}_2$$
$$\vec{J} = \vec{L} + \vec{S}$$

Ex: Er⁺ ground level: [Xe]4f¹²(³H) 6s(²S) ⁴H_{13/2} $L_1 = 5 \\ S_1 = 1 \qquad L_2 = 0 \\ S_2 = 1/2$

$$L = 5$$

 $S = 3/2$
 $J = 13/2$

Landé-g factors

37

Landé-g factors

10/07/2023

M. Lepers

SF	(1)	(2)	(3)
f_1	0.884 ± 0.056	0.886 ± 0.046	0.987 ± 0.081
f_2	0.877 ± 0.055	0.876 ± 0.044	0.892 ± 0.607
f_3	0.797 ± 0.088	0.797 ± 0.071	0.870 ± 0.187
f_4	0.799 ± 0.493	0.808 ± 0.394	0.857 ± 0.099
f_5	0.822 ± 0.701	0.817 ± 0.569	0.859 ± 0.179
σ_A	5.488×10^{6}	4.565×10^{6}	5.891×10^{6}
$\sigma_{\mathrm{lg}A}$	0.524	0.217	0.199

CaDDiAcS database

Wavelength (nm)	Einstein A coeff. (s⁻¹)	Lower Energy (cm ⁻¹)	Lower Angular Momentum	Lower Leading Term	Lower Leading Percentage	Upper Energy (cm ⁻¹)	Upper Angular Momentum	Upper Leading Term	Upper Leading Percentage
200.7	4.286e+5	0.000	13/2	4f ¹² (³ H ₆)6s _{1/2} (6,1/2)	98.1	49849.0	11/2	4f ¹¹ (² K ^o _{13/2})5d _{5/2} (13/2,5/2) ^o ₆ 6s _{1/2} (6,1/2) ^o	19.7
200.9	7.828e+5	0.000	13/2	4f ¹² (³ H ₆)6s _{1/2} (6,1/2)	98.1	49785.6	11/2	4f ¹¹ (⁴ F ^o _{7/2})5d ² (³ P ₂) (7/2,2) ^o	22.4
201.5	2.349e+5	0.000	13/2	4f ¹² (³ H ₆)6s _{1/2} (6,1/2)	98.1	49641.7	13/2	4f ¹¹⁽⁴ G° _{7/2})5d _{5/2} (7/2,5/2)° ₆ 6s _{1/2} (6,1/2)°	24.3
202.1	2.429e+6	0.000	13/2	4f ¹² (³ H ₆)6s _{1/2} (6,1/2)	98.1	49482.7	11/2	4f ¹¹ (⁴ G ^o _{7/2})5d6s(³ D ₃) (7/2,3) ^o	21.1
202.5	1.152e+5	0.000	13/2	4f ¹² (³ H ₆)6s _{1/2} (6,1/2)	98.1	49406.6	13/2	4f ¹¹ (⁴ F ^o _{9/2})5d ² (¹ D ₂) (9/2,2) ^o	17.8
202.6	3.878e+5	0.000	13/2	4f ¹² (³ H ₆)6s _{1/2} (6,1/2)	98.1	49371.4	11/2	4f ¹¹ (⁴ G ^o _{7/2})5d6s(³ D ₃) (7/2,3) ^o	15.9
202.6	2.477e+5	0.000	13/2	4f ¹² (³ H ₆)6s _{1/2} (6,1/2)	98.1	49361.0	15/2	$4f^{11}({}^{4}F^{o}_{9/2})5d^{2}({}^{1}G_{4})(9/2,4)^{o}$	28.0
203.4	8.767e+5	0.000	13/2	4f ¹² (³ H ₆)6s _{1/2} (6,1/2)	98.1	49188.9	11/2	4f ¹¹ (² K ^o _{13/2})5d6s(³ D ₃) (13/2,3) ^o	21.4
204.0	4.585e+3	0.000	13/2	4f ¹² (³ H ₆)6s _{1/2} (6,1/2)	98.1	49035.1	11/2	4f ¹¹ (⁴ I ^o _{9/2})5d ² (¹ D ₂) (9/2,2) ^o	16.8
204.5	2.014e+5	0.000	13/2	4f ¹² (³ H ₆)6s _{1/2} (6,1/2)	98.1	48919.9	11/2	$4f^{11}({}^{4}F^{0}{}_{5/2})5d^{2}({}^{3}F)$ ${}^{3}[11/2]^{0}$	11.1
204.6	4.240e+5	0.000	13/2	4f ¹² (³ H ₆)6s _{1/2} (6,1/2)	98.1	48889.9	13/2	4f ¹¹ (⁴ I ^o _{9/2})5d ² (¹ G ₄) (9/2,4) ^o	31.9
205.6	4.104e+5	0.000	13/2	4f ¹² (³ H ₆)6s _{1/2} (6,1/2)	98.1	48645.6	11/2	4f ¹¹ (² K° _{13/2})5d _{3/2} (13/2,3/2)° ₅ 6s _{1/2} (5,1/2)°	19.3
206.077	4.745e+3	0.000	13/2	4f ¹² (³ H ₆)6s _{1/2} (6,1/2)	98.1	48525.656	13/2	4f ¹¹ (⁴ I ^o _{9/2})5d ² (¹ G ₄) (9/2,4) ^o	18.0
207.2	2.968e+5	0.000	13/2	4f ¹² (³ H ₆)6s _{1/2} (6,1/2)	98.1	48274.1	15/2	4f ¹¹ (² K ^o _{13/2})5d6s(³ D) ³ [15/2] ^o	61.7
207.8	2.886e+4	0.000	13/2	4f ¹² (³ H ₆)6s _{1/2} (6,1/2)	98.1	48135.9	15/2	4f ¹¹ (⁴ F ^o _{7/2})5d ² (³ F ₄) (7/2,4) ^o	37.2
207.8	7.864e+4	0.000	13/2	4f ¹² (³ H ₆)6s _{1/2} (6,1/2)	98.1	48132.3	11/2	$4f^{11}({}^{4}F^{o}_{5/2})5d^{2}({}^{3}F_{3})(5/2,3)^{o}$	12.2
208.2	1.274e+5	0.000	13/2	4f ¹² (³ H ₆)6s _{1/2} (6,1/2)	98.1	48052.5	11/2	4f ¹¹ (⁴ F ^o _{7/2})5d ² (³ F) ³ [9/2] ^o	14.4
000 7	0.000-14	0.000	40/0	4512(311)60 (6.4/2)	00.1	47040.0	44.10	45110 -2 210	00.0

10/07/2023

Laser-cooling of Er⁺?

10/07/2023

Laser-cooling of Er⁺?

M. Lepers et al., Phys. Rev. A 93, 011401 (2016)